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6.013/ESD.013J — Electromagnetics and Applications Fall 2005

Problem Set 3 - Solutions
Prof. Markus Zahn MIT OpenCourseWare

Problem 3.1
A

The idea here is similar to applying the chain rule in a 1D problem:

£ () G 1158

where f(z) corresponds to |r — r’|.
So, by differentiating f(z) we get part of the answer to the derivative of 1/f(z). But, we can just do it
directly:

e—r| = (@ =22+ (y —y)? + (2 — 2)?

V#—Ag#_FAg#_i_Ag#
[r — 1’| ~ % oy |r — 1| Cy oy ||r —r'| 9z [r — 1’|

So, we can apply the trick above by just considering x, y, and z components separately.
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Similarly:
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We have

r—r'P= (-2 + -y +(=-2)>,

SO:
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The denominators are clearly |r — r'|3, thus
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B

This follows from part A immediately by substitution. Remember V is derivatives in terms of the unprimed
coordinates x, vy, and z; V does not operate on x’, y', or 2’.

B(r) — / p(r')dv’ / Aoa d¢’
~ Sy dmeolr — 1| ) 4meg(a? + 22)1/2

where we consider the infinitesimal charges dg = (a d$)\g around the ring.
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Figure 1: Diagram for Problem 3.1 Part C. Differential length ad¢ in a circular hoop of line charge. (Image
by MIT OpenCourseWare.)

We only care about the z-axis in the problem, so, by symmetry, there is no field in the x and y directions.

2
o(x) = /0 o(a dg)

dreg(a? + 22)1/2’

where (a? + 22)1/2 is the distance from the charge A\ga d¢ to the point z on the z-axis.

)\oa

B(r) = — 00
(r) 2eo(@ + 2)1/°

on the z-axis

Check the limit as z — oo
Xoa @

®(z — 0) = Seole]  dmzol?] (same form as point charge where g = A\o27ma) v/
0 0
Now,
0 0
0 0 0P 0 Aoa
E=-Vo :-égC; ég & o)== | o5 aun
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aloz
E=¢, ————
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Again, we check the limit as z — oo :
& _Aoa . A 92 .
e, 2%, z>0 e, =2>5; 2>0
E — z 25022’ _ AZ 471'_6()22’ f . t h
(z — o) { e 2_8/[\)2(;; 2 <0 { 8. b 2 <0 (same form as point charge)
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D
From part C

d — )\OT
 2e0(r2 + 22)1/2

for a ring of radius r. But now we have o(, not \g. How do we express \g in terms of (7

Figure 2: Diagram for Problem 3.1 Part D. Finding the scalar electric potential and electric field of a charged
circular disk by adding up contributions from charged hoops of differential radial thickness. (Image by MIT
OpenCourseWare.)

Take a ring of width dr in the disk (see figure). We have

Total charge = (r)(27)(dr)oy
—

circum.

total charge

=09 d
length o ar

Line charge density = \g =
So, A\g = 09 dr and

oor dr
d(b =
2e0(r2 + 22)1/2

Integrating gives

a d a d r=a
Brora :/ = (007‘ r _ 90 rdr _ 90 [ /77“24—22}
0 0

P24 222 T 2 Jy (1242212 2 r=0

=2 (Va2 422 ~ ]

260
ooz 1 1 R
E= Vogm=20 "~ |&
T ey {Z| \/a2+22]e

As a — o0, z in Va? + 22 can be neglected, so:

‘I’total(a - OO) = —;TO(Z - Cl) . .
E(a — 00) = —Vd _ é"z 2% z > 0, just like sheet charge
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Problem 3.2
A

Figure 3: Diagram for Problem 3.2 Part A. (Image by MIT OpenCourseWare.)

We can simply add the potential contributions of each point charge:

a4 q
dmegry  dmegr_’

d 2
ry = x2+y2+(z—2)
d 2
ro = x2+y2+(z+2)

Figure 4: Diagrams for Problem 3.1 Part B. (Image by MIT OpenCourseWare.)

p = qd, where p is the dipole moment. We must make some approximations. As r — oo, ry, r—, and r
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become nearly parallel. Thus:

r+%r—a:r—§cosb‘

d
Ty %7'(1—(:050).
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Similarly,

d
r_ =7 (1+cos€)
2r

By part A,

o =1 [1—1]
dmeg |ry T

If |z] < 1, then 1/(1 + ) ~ 1 — 2. In addition,
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Inr = 2In(sinf) + k = 7 = rosin® 6 (when 0 = /2, r = 70)
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sl Lo
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Figure 5: The potential at any point P due to the electric dipole is equal to the sum of potentials of each
charge alone. The equi-potential (dashed) and field lines (solid) for a point electric dipole calibrated for
4meq/p = 100.

In[1]:= <<Graphics‘Graphics®
In[2]:= r[ro_,theta_]:= roxSin[theta] "2
In[3]:= theta2 = Pi/2 - theta

In[4]:= eplot = PolarPlot[r[.25, theta2], r[.5, theta2], r[1, theta2], r[2, theta2]
{theta, 0, 2*Pi}, PlotRange -> All]


http:PolarPlot[r[.25
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Out [4]=
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Figure 6: Mathematica Plot 1 — Electric field lines (Image by MIT OpenCourseWare.)

In[5]:= rplphi_,theta_]:= Sqrt[Abs[Cos[theta]/(100%Phi)]]
In[6]:= pplot = PolarPlot[{rp[0.0025, theta2], rp[.01, theta2],
rp[.04, theta2], rp[.16, theta2], rpl[.64, theta2], rp[2.56, theta2],
rp[10.24, theta2], rp[40.96, theta2]}, {theta, -Pi, Pi}, PlotRange -> All]
Out [6]=
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Figure 7: Mathematica Plot 2 — Equipotential lines (Image by MIT OpenCourseWare.)

In[7]:= tplot = Show[eplot, pplot]


http:rp[2.56
http:rp[10.24
http:rp[40.96
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Out[7]=
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Figure 8: Mathematica Plot 3 — Electric field and equipotential Lines (Image by MIT OpenCourseWare.)

Problem 3.3
A

The bird acquires the same potential as the line, hence has charges induced on it and conserves charge when
it flies away:.

B
The fields are those of a charge Q at y = h, x = Ut and an image at y = —h and x = Ut.

C
The potential is the sum of that due to ) and its image —@.

. Q 1 1

dmeo | \[(x —Ut)2+(y—h)2+22 /(e —Ut)>’+ (y+h)> + 22
D
From this potential
B _87@ . Q y—h _ y+h
Yo 0y Ameo (= U2+ (y—h)2+ 2232 [(x—Ut)2+ (y—h)2+ 2232 [~
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Thus, the surface charge density is

QReo —h h

dmeg |[(x — U2 + h2 + 22372 [(x — Ut)? + h2 + 22]3/2
—Qh

2m((x — Ut)? + h? + 22]3/2

gg = E()Eyly:() =

E

The net charge ¢q on the electrode at any given instant is

_ / “ / : —Qh dxdz
- om0 Jomo 27[(x — Ut)2 + h2 + 22]3/2°

If w < h,

B /l —Qhw dx
1= | on(z— U2 1 R2P/2

For the remaining integration, ' = (z — Ut), da’ = dx, and

/lUt —Qhw dI/
q= o 271_[3:/2_‘_]12]3/2'

Thus,

q:

_Qiu) [ —Ut n Ut
ol | A UOP+ B2 J(UDE + 2

The dashed curves (1) and (2) in the figure 9(a) below are the first and second terms in the above equation.
They sum to give (3).

Figure 9: Curves for Problem 3.3 Part E. The net charge (a) and voltage (b) as a function of time on the
electrode in the y = 0 plane. (Image by MIT OpenCourseWare.)

F

The current follows from the expression for g as

._dg_ _Qu —UR? L un
Tt 2nh [[(— U2+ 232 T (U2 + h2P2

and so the voltage is then V = —iR = —R dq/dt. A sketch is shown in figure 9(b) above.
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Problem 3.4

Image

Figure 10: Diagram for Problem 3.4. The image current from a line current /€, a distance d above a perfect
conductor. (Image by MIT OpenCourseWare.)

A

By the method of images, the image current is located at (0, —d) with the current I in the opposite direction
of the source current.
For a single line current I at the origin, the magnetic field is

1 1

omr 0T 2m(x? + y?)

(—yé,+x8y).

Use the superposition for a current [ in the +z direction at y = d so that y is replaced by y — d and for the
current —I in the —z direction at y = —d so that y is replaced by y + d. Then

1 1

H otal =— —(y—d Am &,) — — d Am é
total 27T(.’1§‘2+(y—d)2)( (y )e +xey) 27T(l‘2+(y+d)2)( (y+ )e +xey)
B
The surface current at the y = 0 surface is
—1Id
K, =—H,|,— K=——-—--8,
ly=or = m(x? + d?) ¢
C
The total current flowing on the y = 0 surface is
oo —Idé, [T 1 ~Idé. 1 e
Ligtal = €. K, dr = © / ———dx = c ftan_l (E) =-le,
o T oo (T2 +d?) T d a/|_
D
The force per unit length on the current I at y = d comes from the image current at y = —d
. pol?
(&) x (nH(z =0,y =d)) =7 &,

10
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