
Midterm 1 — Fall 10 1

6.01 Midterm 1 : Fall 2010
Name: Section:

Enter all answers in the boxes provided.
During the exam you may:

read any paper that you want to •

use a calculator •

You may not

use a computer, phone or music player •

For staff use:

1. /12

2. /16

3. /16

4. /21

5. /20

6. /15

total: /100

Midterm 1 — Fall 10 2

1 OOP (12 points)
The following definitions have been entered into a Python shell:

class Account:

chargeRate = 0.01

def __init__(self, start):

self.value = start
def debit(self, amount):

debitAmt = min(amount, self.value)

self.value = self.value - debitAmt

return debitAmt

def deposit(self, amount):

self.value += amount

def fee(self, baseAmt):

self.debit(baseAmt * self.chargeRate)

def withdraw(self, amount):

if self.value >= 10000.0:

self.fee(amount/2.0)

else:

self.fee(amount)

return self.debit(amount)

class Checking(Account):

chargeRate = 0.05

def deposit(self, amount):

if self.value <= 1:

Account.deposit(self, (1-self.chargeRate) * amount)

else:

Account.deposit(self, amount)

Assume that the following expressions have been evaluated:

Eric = Checking(4000.0)

Ellen = Account(4000.0)

Midterm 1 — Fall 10 3

Write the values of the following expressions. Write None when there is no value; write Error
when an error results and explain briefly why it’s an error. Assume that these expressions are
evaluated one after another (all of the left column first, then right column).

Eric.withdraw(3000.0)

Eric.value

Eric.withdraw(1000.0)

Eric.value

Eric.deposit(5000.0)

Eric.value

Ellen.withdraw(3000.0)

Ellen.value

Ellen.withdraw(1000.0)

Ellen.value

Ellen.deposit(5000.0)

Ellen.value

Midterm 1 — Fall 10 4

2 So who kicks b*** (16 points)
Here are some class definitions, meant to represent a league of football teams.

class Team:
def __init__(self, name, wins, losses, pointsFor, pointsAgainst):

self.name = name

self.wins = wins

self.losses = losses

self.pointsFor = pointsFor

self.pointsAgainst = pointsAgainst

class League:

def __init__(self):

self.teams = {}

def addTeam(self, team):

self.teams[team.name] = team

def updateGame(self, teamName, ptsFor, ptsAgin):

to be filled in

def computeStat(self, proc, filt):

return [proc(team) for team in self.teams.values() if filt(team)]

Imagine instantiating these classes by:

Pats = Team(’Pats’, 5, 1, 150, 100)

Ravens = Team(’Ravens’, 4, 2, 80, 30)

Colts = Team(’Colts’, 1, 4, 100, 200)

NFL = League()

NFL.addTeam(Pats)

NFL.addTeam(Ravens)

NFL.addTeam(Colts)

We would like to be able to update our information by adding in new game data. For example, if
the Pats beat the Colts, by a score of 30 to 15, the record for the Pats should include another win,
and an updated record of points for and points against; similarly for the Colts. We would do this
by calling

NFL.updateGame(’Pats’, 30, 15)

NFL.updateGame(’Colts, 15, 30)

Midterm 1 — Fall 10 5

Write a Python procedure that will complete the definition of updateGame. You may assume that
all teams exist in the instance of the league, and that there are no ties, only wins and losses. Please
make sure that the indentation of your written solution is clear.

Midterm 1 — Fall 10 6

Assume that the NFL has been defined as above, but with more teams. Write an expression using
computeStat, to be evaluated by the Python interpreter, that will return a list of wins for all teams
in the NFL. (It is okay to define and use helper functions.) For the example instance defined above,
your expression should return the list:

[5, 4, 1]

Write an expression using computeStat, to be evaluated by the Python interpreter, that will
return a list of the losses for the Pats and the Colts, where each entry includes the name of the
team. (It is okay to define and use helper functions.) For the example instance defined above,
your expression should return the list:

[[’Pats’, 1], [’Colts’, 4]]

Midterm 1 — Fall 10	 7

3 Will it or won’t it? (16 Points)
For each difference equation below, say whether, for a unit sample input signal:

•	 the output of the system it describes will diverge or not as n approaches infinity, assuming
that x[n], y[n] = 0 for n < 0,

•	 the output of the system it describes (a) will always be positive, (b) will alternate between
positive and negative, or (c) will have a different pattern of oscillation

Part 1:

5y[n] + 2y[n − 1] = x[n − 2]

diverge? Yes or No

Why?

positive/alternate/oscillate

Why?

Part 2:

y[n] = −2y[n − 1] − 5y[n − 2] + x[n − 1]

diverge? Yes or No

Why?

positive/alternate/oscillate

Why?

Midterm 1 — Fall 10 8

4 Grow, baby, grow (21 Points)
You and your colleague in the Biology Department are growing cells. In each time period, every
cell in the bioreactor divides to yield itself and one new daughter cell. However, due to aging,
half of the cells die after reproducing (don’t worry about the details of how accurately this models
real cell division).

We can describe this system with the following difference equation. We let Po denote the number
of cells at each time step.

Then
Po[n] = 2Po[n − 1] − 0.5Po[n − 2]

Suppose that Po[0] = 10 and Po[n] = 0 if n < 0. What are the first few values for the number of
cells (note that while not physically realistic, our model might provide fractional answers)?

Po[0] = 10

Po[1] =

Po[2] =

Po[3] =

Your goal is to create a constant population of cells, that is, to keep Po constant at some desired
level Pd. You are to design a proportional controller that can add or remove cells as a function
of the difference between the actual and desired number of cells. Assume that any additions or
deletions at time n are based on the measured number of cells at time n−1. Denote the number of
cells added or removed at each step Pinp. Derive the difference equations that govern this closed
loop system.

Midterm 1 — Fall 10 9

Draw a block diagram that represents this system, using delays, adders/subtractors and gains.

What is the system function that characterizes Po ? Use k to denote the gain in your system. Pd

5

Midterm 1 — Fall 10 10

Predicting Growth (20 Points)
The following Python classes differ only in the boxed regions.

class GrowthA (SM):
startState = (0,0)
def getNextValues(self,state,input):

(s0,s1) = state
output = input + s0 + 2*s1
newState = (s1,output)

return (newState,output)

class GrowthB (SM):
startState = (0,0)
def getNextValues(self,state,input):

(s0,s1) = state
output = input + 2*s0 + s1
newState = (s1,output)

return (newState,output)

class GrowthC (SM):
startState = (0,0)
def getNextValues(self,state,input):

(s0,s1) = state
output = input + s0 + 2*s1
newState = (s1,input)

return (newState,output)

class GrowthD (SM):
startState = (0,0)
def getNextValues(self,state,input):

(s0,s1) = state
output = input + 2*s0 + s1
newState = (s1,input)

return (newState,output)

Part a. Determine which (if any) of GrowthA, GrowthB, GrowthC, and GrowthD generate state
machines whose output y[n] at time n is given by

y[n] = x[n] + x[n − 1] + 2x[n − 2]

for times n > 0, when the input x[n] = 0 for n < 0.

Circle all of the classes that satify this relation, or circle none if none satisfy it.

GrowthA GrowthB GrowthC GrowthD none

Midterm 1 — Fall 10 11

Part b. Determine which (if any) of GrowthA, GrowthB, GrowthC, and GrowthD generate state
machines whose input-output relation can be expressed as the following block diagram.

GrowthA GrowthB GrowthC GrowthD none

Delay

Delay

1

2

+X Y

Circle all of the classes that satify this relation, or circle none if none satisfy it.

Part c. Let HA, HB, HC, and HD represent the system functions associated with the state machines
generated by GrowthA, GrowthB, GrowthC, and GrowthD, respectively. Fill in the following
table to indicate the number and locations of the poles of HA, HB, HC, and HD. Pole locations
can be listed in any order. Leave unnecessary entries blank.

system # of poles pole 1 location pole 2 location pole 3 location

HA

HB

HC

HD

Midterm 1 — Fall 10	 12

6 I need a caffeine jolt (15 Points)
Taking exams is hard work, and it would be nice if there were a caffeine dispenser next to every
student’s desk. You are to create a state machine that dispenses caffeine jolts (unfortunately these
are expensive, and cost 3 dollars each!). This machine accepts dollar bills in different denomina
tions, but does not make change. Hence, your machine should have the following behavior:

•	 The inputs to the machine are positive integers (representing different denominations of dol
lars);

•	 If the input plus the current amount of money deposited in the machine is greater than 3, the
machine outputs the current input;

•	 If the input plus the current amount of money deposited in the machine is exactly 3, the ma
chine outputs a jolt and resets its internal state;

•	 If the input plus the current amount of money deposited in the machine is less than 3, the
machine adjusts its state, outputs None and waits for the next input.

Here are some examples:

>>>v = Vending()

>>>v.transduce([1,1,1])

[None, None, ’jolt’]

>>>v.transduce([1,2])

[None, ’jolt’]

>>>v.transduce([5,1,4,2])

[5, None, 4, ’jolt’]

Feel free to change the startState if it simplifies your solution. Here is an outline of our state
machine:

class Vending(sm.SM):

startState = None

def getNextValues(self, state, inp):

Midterm 1 — Fall 10 13

Complete the definition of getNextValues

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

