6.01 Midterm 1

Spring 2011

Name:

Solutions

Section:

These solutions do not apply for the conflict exam.

Enter all answers in the boxes provided.

During the exam you may:

- read any paper that you want to
- use a calculator

You may not

• use a computer, phone or music player

For staff use:

1.	/16
2.	/24
3.	/16
4.	/28
5.	/16
total:	/100

1 Difference Equations (16 points)

System 1: Consider the system represented by the following difference equation

$$y[n] = x[n] + \frac{1}{2} \left(5y[n-1] + 3y[n-2] \right)$$

where x[n] and y[n] represent the n^{th} samples of the input and output signals, respectively.

1.1 Poles (4 points)

Determine the pole(s) of this system.

number of poles: 2
list of pole(s):
$$3 \text{ and } -\frac{1}{2}$$

1.2 Behavior (4 points)

Does the unit-sample response of the system converge or diverge as $n \to \infty$?

converge or diverge:	diverge	
Briefly explain.		

System 2: Consider a different system that can be described by a difference equation of the form

y[n] = x[n] + Ay[n-1] + By[n-2]

where A and B are real-valued constants. The system is known to have two poles, given by $\frac{1}{2} \pm j\frac{1}{3}$.

1.3 Coefficients (4 points)

Determine A and B.

$$A = \begin{bmatrix} 1 \\ B = \begin{bmatrix} -\frac{13}{36} \end{bmatrix}$$

1.4 Behavior (4 points)

Does the unit-sample response of the system converge or diverge as $n \to \infty?$

converge or diverge:	converge	
Briefly explain.		

2 Geometry OOPs (24 points)

We will develop some classes and methods to represent polygons. They will build on the following class for representing points.

```
class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    def distanceTo(self, p):
        return math.sqrt((self.x - p.x)**2 + (self.y - p.y)**2)
    def __str__(self):
        return 'Point'+str((self.x, self.y))
    __repr__ = __str__
```

2.1 Polygon class (6 points)

Define a class for a Polygon, which is defined by a list of Point instances (its *vertices*). You should define the following methods:

- __init__: takes a list of the points of the polygon, in a counter-clockwise order around the polygon, as input
- perimeter: takes no arguments and returns the perimeter of the polygon

```
>>> p = Polygon([Point(0,0),Point(1,0),Point(1,1),Point(0,1)])
>>> p.perimeter()
4.0
```

```
class Polygon:
    def __init__(self, p):
        self.points = p
    def perimeter(self):
        p = self.points
        n = len(p)
        per = 0
        for i in range(n):
            per += p[i].distanceTo(p[(i+1)%n])
        return per
```

2.2 Rectangles (6 points)

Define a Rectangle class, which is a subclass of the Polygon class, for an axis-aligned rectangle which is defined by a center point, a width (measured along x axis), and a height (measured along y axis).

```
>>> s = Rectangle(Point(0.5, 1.0), 1, 2)
```

This has a result that is equivalent to

```
>>> s = Polygon([Point(0, 0), Point(1, 0), Point(1, 2), Point(0, 2)])
```

Define the Rectangle class; write as little new code as possible.

2.3 Edges (6 points)

Computing the perimeter, and other algorithms, can be conveniently organized by iterating over the *edges* of a polygon. So, we can describe the polygon in terms of edges, as defined in the following class:

```
class Edge:
    def __init__(self, p1, p2):
        self.p1 = p1
        self.p2 = p2
    def length(self):
        return self.p1.distanceTo(self.p2)
    def determinant(self):
        return self.p1.x * self.p2.y - self.p1.y * self.p2.x
    def __str__(self):
        return 'Edge'+str((self.p1, self.p2))
    __repr__ = __str__
```

Assume that the __init__ method for the Polygon class initializes the attribute edges to be a list of Edge instances for the polygon, as well as initializing the points.

Define a new method, sumForEdges, for the Polygon class that takes a procedure as an argument, which applies the procedure to each edge and returns the sum of the results. The example below simply returns the number of edges in the polygon.

```
>>> p = Polygon([Point(0,0),Point(2,0),Point(2,1),Point(0,1)])
>>> p.sumForEdges(lambda e: 1)
4
```

```
def sumForEdges(self, f):
    return sum([f(e) for e in self.edges])
```

2.4 Area (6 points)

A very cool algorithm for computing the area of an arbitrary polygon hinges on the fact that: The area of a planar non-self-intersection polygon with vertices $(x_0, y_0), \ldots, (x_n, y_n)$ is

$$A = \frac{1}{2} \left(\begin{vmatrix} x_0 & x_1 \\ y_0 & y_1 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \dots + \begin{vmatrix} x_n & x_0 \\ y_n & y_0 \end{vmatrix} \right)$$

where |M| denotes the determinant of a matrix, defined in the two by two case as:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (ad - bc)$$

Note that the determinant method has already been implemented in the Edge class.

Use the sumForEdges method and any other methods in the Edge class to implement an area method for the Polygon class.

```
def area(self):
    return 0.5*self.sumForEdges(Edge.determinant)
or
    def area(self):
        return 0.5*self.sumForEdges(lambda e: e.determinant())
or
    def aux(e): return e.determinant()
    def area(self): return 0.5*self.sumForEdges(aux)
```

3 Signals and Systems (16 points)

Consider the system described by the following difference equation:

$$y[n] = x[n] + y[n-1] + 2y[n-2].$$

3.1 Unit-Step Response (4 points)

Assume that the system starts at rest and that the input x[n] is the **unit-step** signal u[n].

 $x[n] = u[n] \equiv \left\{ \begin{matrix} 1 & n \geqslant 0 \\ 0 & \text{otherwise} \end{matrix} \right.$

Find y[4] and enter its value in the box below.

y[4] = 21

We can solve the difference equation by iterating, as shown in the following table.

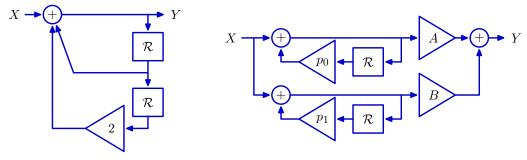
n	x[n]	y[n – 1]	y[n−2]	y[n]
0	1	0	0	1
1	1	1	0	2
2	1	2	1	5
3	1	5	2	10
4	1	10	5	21

3.2 Block Diagrams (12 points)

The system that is represented by the following difference equation

y[n] = x[n] + y[n-1] + 2y[n-2]

can also be represented by the block diagram below (left).



It is possible to choose coefficients for the block diagram on the right so that the systems represented by the left and right block diagrams are "equivalent".¹

Enter values of p₀, p₁, A, and B that will make the systems equivalent in the boxes below

$$p_0 = \boxed{\begin{array}{c}2} A = \boxed{\begin{array}{c}\frac{2}{3}} p_1 = \boxed{-1} B = \boxed{\frac{1}{3}}$$

For the left diagram, $Y = X + \Re Y + 2\Re^2 Y$ so the system function is

$$\frac{Y}{X} = \frac{1}{1 - \mathcal{R} - 2\mathcal{R}^2} \,.$$

For the right diagram,

$$\frac{Y}{X} = A\left(\frac{1}{1-p_0\mathcal{R}}\right) + B\left(\frac{1}{1-p_1\mathcal{R}}\right)\,.$$

The two systems are equivalent if

$$\frac{1}{1-\Re Y-2\Re^2} = A\left(\frac{1}{1-p_0\Re}\right) + B\left(\frac{1}{1-p_1\Re}\right) = \frac{A(1-p_1\Re) + B(1-p_0\Re)}{1-(p_0+p_1)\Re + p_0p_1\Re^2}.$$

Equating denominators, $p_0p_1 = -2$ and $p_0 + p_1 = 1$, i.e., $p_0 = 2$ and $p_1 = -1$. Equating numerators, A + B = 1 and $p_1A + p_0B = 0$, i.e., A = 2/3 and B = 1/3.

¹ Two systems are "equivalent" if identical inputs generate identical outputs when each system is started from "rest" (i.e., all delay outputs are initially zero).

4 Robot SM (28 points)

There is a copy of this page at the back of the exam that you can tear off for reference.

In Design Lab 2, we developed a state machine for getting the robot to follow boundaries. Here, we will develop a systematic approach for specifying such state machines.

We start by defining a procedure called inpClassifier, which takes an input of type io.SensorInput and classifies it as one of a small number of input types that can then be used to make decisions about what the robot should do next.

Recall that instances of the class io.SensorInput have two attributes: sonars, which is a list of 8 sonar readings and odometry which is an instance of util.Pose, which has attributes x, y and theta.

Here is a simple example:

```
def inpClassifier(inp):
    if inp.sonars[3] < 0.5: return 'frontWall'
    elif inp.sonars[7] < 0.5: return 'rightWall'
    else: return 'noWall'</pre>
```

Next, we create a class for defining "rules." Each rule specifies the next state, forward velocity and rotational velocity that should result when the robot is in a specified current state and receives a particular type of input. Here is the definition of the class Rule:

```
class Rule:
    def __init__(self, currentState, inpType, nextState, outFvel, outRvel):
        self.currentState = currentState
        self.inpType = inpType
        self.nextState = nextState
        self.outFvel = outFvel
        self.outRvel = outRvel
```

Thus, an instance of a Rule would look like this:

```
Rule('NotFollowing', 'frontWall', 'Following', 0.0, 0.0)
```

which says that if we are in state 'NotFollowing' and we get an input of type 'frontWall', we should transition to state 'Following' and output zero forward and rotational velocities.

Finally, we will specify the new state machine class called Robot, which takes a start state, a list of Rule instances, and a procedure to classify input types. The following statement creates an instance of the Robot class that we can use to control the robot in a Soar brain.

```
r = Robot('NotFollowing',
        [Rule('NotFollowing', 'noWall', 'NotFollowing', 0.1, 0.0),
        Rule('NotFollowing', 'frontWall', 'Following', 0.0, 0.0),
        Rule('Following', 'frontWall', 'Following', 0.0, 0.1)],
        inpClassifier)
```

Assume it is an error if a combination of state and input type occurs that is not covered in the rules. In that case, the state will not change and the output will be an action with zero velocities.

4.1 Simulate (3 points)

For the input classifier (inpClassifier) and Robot instance (r) shown above, give the outputs for the given inputs.

	input			output	
step	sonars[3]	sonars[7]	next state	forward vel	rotational vel
1	1.0	5.0	NotFollowing	0.1	0.0
2	0.4	5.0	Following	0.0	0.0
3	0.4	5.0	Following	0.0	0.1

4.2 Charge and Retreat (4 points)

We'd like the robot to start at the origin (i.e., x=0, y=0, theta=0), then move forward (along x axis) until it gets within 0.5 meters of a wall, then move backward until it is close to the origin (within 0.02 m), and then repeat this cycle of forward and backward moves indefinitely. Assume that the robot never moves more than 0.01 m per time step.

Write an input classifier for this behavior.

```
def chargeAndRetreatClassifier(inp):
    if inp.sonars[3] < 0.5: return 'frontWall'
    elif inp.odometry.x < 0.02: return 'origin'
    else: return 'between'</pre>
```

4.3 Robot instance (7 points)

Write an instance of the Robot class that implements the charge-and-retreat behavior described above. Make sure that you cover all the cases.

4.4 Matching (6 points)

Write a procedure match(rules, inpType, state) that takes a list of rules, an input type classification, and a state, and returns the rule in rules that matches inpType and state if there is one, and otherwise returns None.

```
def match(rules, inpType, state):
    for r in rules:
        if r.inpType == inpType and r.currentState == state:
            return r
        return None
```

4.5 The Machine (8 points)

Complete the definition of the Robot class below; use the match procedure you defined above.

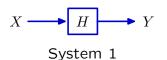
Recall that, at each step, the output must be an instance of the io.Action class; to initialize an instance of io.Action, you must provide a forward and a rotational velocity.

If a combination of state and input type occurs that is not covered in the rules, remain in the same state and output an action with zero velocity.

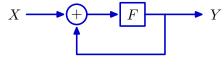
```
class Robot(sm.SM):
    def __init__(self, start, rules, inpClassifier):
        self.startState = start
        self.rules = rules
        self.inpClassifier = inpClassifier
    def getNextValues(self, state, inp):
        inpType = self.inpClassifier(inp)
        r = match(self.rules, inpType, state)
        if r:
            return (r.nextState, io.Action(r.outFvel, r.outRvel)
        else:
            return (state, io.Action(0, 0))
```

5 Feedback (16 points)

Let H represent a system with input X and output Y as shown below.



Assume that the system function for H can be written as a ratio of polynomials in \Re with constant, real-valued, coefficients. In this problem, we investigate when the system H is equivalent to the following feedback system



System 2

where F is also a ratio of polynomials in \mathcal{R} with constant, real-valued coefficients.

Example 1: Systems 1 and 2 are equivalent when $H = H_1 = \frac{\Re}{1 - \Re}$ and $F = F_1 = \Re$. **Example 2:** Systems 1 and 2 are equivalent when $H = H_2 = \frac{\Re^2}{1 - \Re^2}$ and $F = F_2 = \Re^2$.

5.1 Generalization (4 points)

Which of the following expressions for F guarantees equivalence of Systems 1 and 2?

$$F_A = \frac{1}{1+H}$$
 $F_B = \frac{1}{1-H}$ $F_C = \frac{H}{1+H}$ $F_D = \frac{H}{1-H}$

Enter F_A or F_B or F_C or F_D or **None**:

F_C

Let E represent the output of the adder. Then

$$Y = FE = F(X + Y)$$
$$Y - FY = FX$$
$$\frac{Y}{X} = \frac{F}{1 - F} = H$$
$$H - HF = F$$
$$H = F + HF$$
$$F = \frac{H}{1 + H}$$

5.2 Find the Poles (6 points)

Let
$$H_3 = \frac{9}{2 + \Re}$$
. Determine the pole(s) of H_3 and the pole(s) of $\frac{1}{1 - H_3}$.
Pole(s) of H_3 : $-\frac{1}{2}$ Pole(s) of $\frac{1}{1 - H_3}$: $\frac{1}{7}$

Substitute $\frac{1}{z}$ for \mathcal{R} in H₃:

$$\frac{9}{2+\frac{1}{z}} = \frac{9z}{2z+1}$$

The denominator has a root at z = -1/2. Therefore there is a pole at -1/2. Substitute H₃ into F_{B3}:

$$F_{B3} = \frac{1}{1 - H_3} = \frac{1}{1 - \frac{9}{2 + \Re}} = \frac{2 + \Re}{2 + \Re - 9} = \frac{2 + \Re}{\Re - 7}$$

Now substitute $\frac{1}{z}$ for \Re :

$$\frac{2+\Re}{\Re-7} = \frac{2+\frac{1}{z}}{\frac{1}{z}-7} = \frac{2z+1}{1-7z}.$$

The denominator has a root at z = 1/7. Therefore there is a pole at 1/7.

5.3 SystemFunction (6 points)

Write a procedure insideOut(H):

- the input H is a sf.SystemFunction that represents the system H, and
- the output is a sf.SystemFunction that represents $\frac{H}{1-H}$.

You may use the SystemFunction class and other procedures in sf:

Attributes and methods of SystemFunction class:

```
__init__(self, numPoly, denomPoly)
poles(self)
poleMagnitudes(self)
dominantPole(self)
numerator
denominator
```

Procedures in sf

```
sf.Cascade(sf1, sf2)
sf.FeedbackSubtract(sf1, sf2)
sf.FeedbackAdd(sf1, sf2)
sf.Gain(c)
```

 6.01 Midterm 1

Worksheet (intentionally blank)

6.01 Midterm 1

Worksheet (intentionally blank)

Robot SM: Reference Sheet

This is the same as the first page of problem 4.

In Design Lab 2, we developed a state machine for getting the robot to follow boundaries. Here, we will develop a systematic approach for specifying such state machines.

We start by defining a procedure called inpClassifier, which takes an input of type io.SensorInput and classifies it as one of a small number of input types that can then be used to make decisions about what the robot should do next.

Recall that instances of the class io.SensorInput have two attributes: sonars, which is a list of 8 sonar readings and odometry which is an instance of util.Pose, which has attributes x, y and theta.

Here is a simple example:

```
def inpClassifier(inp):
    if inp.sonars[3] < 0.5: return 'frontWall'
    elif inp.sonars[7] < 0.5: return 'rightWall'
    else: return 'noWall'</pre>
```

Next, we create a class for defining "rules." Each rule specifies the next state, forward velocity and rotational velocity that should result when the robot is in a specified current state and receives a particular type of input. Here is the definition of the class Rule:

```
class Rule:
    def __init__(self, currentState, inpType, nextState, outFvel, outRvel):
        self.currentState = currentState
        self.inpType = inpType
        self.nextState = nextState
        self.outFvel = outFvel
        self.outRvel = outRvel
```

Thus, an instance of a Rule would look like this:

```
Rule('NotFollowing', 'frontWall', 'Following', 0.0, 0.0)
```

which says that if we are in state 'NotFollowing' and we get an input of type 'frontWall', we should transition to state 'Following' and output zero forward and rotational velocities.

Finally, we will specify the new state machine class called Robot, which takes a start state, a list of Rule instances, and a procedure to classify input types. The following statement creates an instance of the Robot class that we can use to control the robot in a Soar brain.

```
r = Robot('NotFollowing',
        [Rule('NotFollowing', 'noWall', 'NotFollowing', 0.1, 0.0),
        Rule('NotFollowing', 'frontWall', 'Following', 0.0, 0.0),
        Rule('Following', 'frontWall', 'Following', 0.0, 0.1)],
        inpClassifier)
```

Assume it is an error if a combination of state and input type occurs that is not covered in the rules. In that case, the state will not change and the output will be an action with zero velocities.

MIT OpenCourseWare http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.