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KENDRA PUGH: Today I'd like to talk to about poles. Last time I ended up talking to you about LTI

representations and manipulations. And, in particular, I want to emphasize the

relationship between feedforward and feedback systems, in order to segway us into

the poles..

Using what we know about that relationship, we can find the base of a geometric

sequence. And that geometric sequence actually represents the long-term response

of our system to a unit sample response or a delta. That value is also what we refer

to the poles.

At this point, I'll go over how to solve for them and very basic properties of them. So

that we can use the information that we have about the poles to try to actually

predict the future or look at the long-term behavior of our system.

First a quick review. Last time we talked about feedforward systems. And, in

particular, I want to emphasize the fact that if you have a transient input to your

feedforward system, you're going to end up with a transient response. There's no

method by which a feedforward system can retain information over more than the

amount of time steps that you feed information into it.

Feedback systems, on the other hand, represent a persistent response to a

transient input. Because you're working with a feedback system information that you

put in can be reflected in more than one time step and possibly multiple time steps,

depending upon how many delays you have working in your feedback system.

Last time I also drew out the relationship between feedforward and feedback

systems. You can actually turn a feedback system or talk about a feedback system

in terms of a feedforward system that takes infinite samples of the input and feeds

them through a summation that takes infinite delays through your system.

You can represent that translation using a geometric sequence. The basis of that

geometric sequence is the object that we're going to use in order to predict the
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future. And that's what we're talking about when we talk about poles.

You can have multiple geometric sequences involved in actually determining the

long-term behaviors of your system. If you only have one, then things are pretty

simple. You find your system function. You find the value associated with p0 in this

expression.

It's OK if there's some sort of scalar on the outside of this expression. We're working

with linear time and variance systems, so that scalar is going to affect the initial

response to your system. But in terms of a long term behavior, it doesn't matter as

much. So don't worry about it right now.

Relatedly, if you're solving for these expressions in second or higher order systems,

you're going to end up having to solve partial fractions. You can do this. And in part,

one of the reasons that you would want to do this is so that you can get out those

scalars, if you're going to be talking about the very short-term response to

something, like a transient input.

We're not going to be too interested in those in this course. We're mostly going to

be talking about long-term response. So we can get around the fact the we're

dealing with a higher order of systems and not solving partial fractions by

substituting in for an expression called z, which actually represents the inverse

power of R and then solving for the roots of that equation.

If you substitute z in for 1 over R in this denominator and then solve for the root

associated with that expression, you'll get the same result. You'll actually end up out

with p0.

All right. So now we know how to find the pole or multiple poles, if we're interested in

multiple poles. What do we do now? I still haven't gone over how to figure out the

long-term behavior of your system.

The first thing you do is look at the magnitude of all the poles that you've solved for

and select the poles with the largest magnitude. If there are multiple poles with the

same magnitude, then you'll end up looking at all of them. If you have different
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properties than the ones here, you can end up with some, you know, complex

behavior. I would not worry about that too much. Or I would ask a professor or TA

when that happens.

But in the general sense, if your dominant pole has a magnitude greater than 1,

then you're going to see long-term divergence in your system. This make sense if

you think about it. If at every time step your unit sample response is multiplied by a

value that is greater than 1, then it's going to increase. And, in fact, the extent to

which the magnitude of your dominant pole is greater than 1 is going to determine

your rate of increase and also determine how fast your envelope explodes.

Similarly, if the magnitude of your dominant pole is less than 1, then in response to

a unit sample input or a delta, your system's going to converge. This also makes

sense intuitively. If you are progressively multiplying the values in your system by a

scalar that is less than 1, then eventually you're going to end up converging to 0.

To cover the only category we haven't talked about, if your dominant pole is actually

equal in magnitude to 1, then you're not going to see convergence or divergence.

And this is one of the places in which the magnitude of the scalar that you end up

multiplying your system by can become relevant. We're not going to focus on this

situation too much. But it's good to know what actually happens when the

magnitude of your dominant pole is equal to 1.

The other feature that we're interested in when we're looking at the dominant pole

of a system is if we were to represent the dominant pole in this form, what the angle

associated with that pole is, if you were to graph that pole on the complex plane

using polar coordinates. If your pole stays on the real axis, or if your pole does not

have a complex component, then you'll see one of two things.

The first thing that it's possible for you to see is that you'll get absolutely non-

alternating behavior. Your system response stays on one side of the x-axis and

either converges, diverges, or remains constant as a consequence of input of the

unit sample. And you won't see any sort of alternating or oscillating behavior. This

only happens when your dominant pole is real and positive.
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If you're dominant pole is real and negative, this also means that it's still on the real

axis, but its value is negative. So if you're looking at polar coordinates, it's going to

have an angle pi associated with it. This means you get alternating behavior. And

what I mean when I say alternating behavior is that your unit sample response is

going to jump across the x-axis at every time step. This is also equivalent to having

a period of 2.

The other situation you can run into is that this angle is neither 0 nor pi. And at that

point you're going to be talking about oscillatory behavior or a sinusoidal response

that retains its edges at the envelope of your function. In order to find the period, or

in order to find the amount of time it takes for your unit sample response to

complete one period, you're going to take the angle associated with your dominant

pole and divide 2pi by it. This is the general equation for a period.

This covers the basics of what you want to do once you already have your poles.

Next time I'm actually going to solve a pole problem and show you what the long-

term response looks like and also talk about some things about poles that I've pretty

much skimmed over. And at that point you should be able to solve and look at poles

for yourself.
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