
Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 271


Chapter 7 
Probabilistic State Estimation


Consider trying to drive through an unfamiliar city. Even if we are able to plan a route from our 
starting location to our destination, navigation can fail on two counts: sometimes we don’t know 
where we are on a map, and sometimes, due to traffic or road work or bad driving, we fail to 
execute a turn we had intended to take. 

In such situations, we have some information about where we are: we can make observations of 
our local surroundings, which give us useful information; and we know what actions we have 
taken and the consequences those are likely to have on our location. So, the question is: how can 
we take information from a sequence of actions and local observations and integrate it into some 
sort of estimate of where we are? What form should that estimate take? 

We’ll consider a probabilistic approach to answering this question. We’ll assume that, as you 
navigate, you maintain a belief state which contains your best information about what state you’re 
in, which is represented as a probability distribution over all possible states. So, it might say that 
you’re sure you’re somewhere in Boston, and you’re pretty sure it’s Storrow drive, but you don’t 
know whether you’re past the Mass Ave bridge or not (of course, it will specify this all much more 
precisely). 

We’ll start by defining probability distributions on simple and complex spaces, and develop a 
set of methods for defining and manipulating them. Then, we’ll formulate problems like the 
navigation problem discussed above as state estimation problems in stochastic state machines. 
Finally, we’ll develop an algorithm for estimating the unobservable state of system, based on 
observations of its outputs. 

7.1 State spaces 
We have been using state machines to model systems and how they change over time. The state 
of a system is a description of the aspects of the system that allow us to predict its behavior over 
time. We have seen systems with finite and infinite state spaces: 

A basic enumeration of states, such as (’closed’, ’closing’, ’open’, ’opening’) for• 
an elevator controller, we will call an atomic finite state space. The states are atomic because 
they don’t have any further detailed structure. 

•	 A state space that is described using more than one variable, such as a counter for seconds that 
goes from 0 to 59 and a counter for minutes that goes from 0 to 59 can be described as having 
two state variables : seconds and minutes. We would say that this state space is factored : a 
state is actually described by a value of each of the two variables. 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 272 

•	 A state space described by a single integer is a countably infinite atomic state space. 

•	 A state space described by a real number is uncountably infinite, but still atomic. 

•	 A state space described by more than one integer or real number (or a combination of contin
uous and discrete state variables) is a factored state space. 

In this chapter, we will concentrate on factored, finite state spaces, and see how to represent and 
manipulate probability distributions on them. 

7.2 Probability distributions on atomic state spaces 
Probability theory is a calculus that allows us to assign numerical assessments of uncertainty to 
possible events, and then do calculations with them in a way that preserves their meaning. (A 
similar system that you might be more familiar with is algebra: you start with some facts that you 
know, and the axioms of algebra allow you to make certain manipulations of your equations that 
you know will preserve their truth). 

The typical informal interpretation of probability statements is that they are long-term frequen
cies: to say “the probability that this coin will come up heads when flipped is 0.5” is to say that, in 
the long run, the proportion of flips that come up heads will be 0.5. This is known as the frequen
tist interpretation of probability. But then, what does it mean to say “there is a 0.7 probability that 
it will rain somewhere in Boston sometime on April 29, 2017”? How can we repeat that process 
a lot of times, when there will only be one April 29, 2017? Another way to interpret probabilities 
is that they are measures of a person’s (or robot’s) degree of belief in the statement. This is some
times referred to as the Bayesian interpretation. In either interpretation, the formal calculus is the 
same. 

So, studying and applying the axioms of probability will help us make true statements about 
long-run frequencies and make consistent statements about our beliefs by deriving sensible con
sequences from initial assumptions. 

We will restrict our attention to discrete sample spaces45, so we’ll let U be the universe or sample 
space, which is a set of atomic events. An atomic event is just a state: an outcome or a way the 
world could be. It might be a die roll, or whether the robot is in a particular room, for example. 
Exactly one (no more, no less) event in the sample space is guaranteed to occur; we’ll say that the 
atomic events are “mutually exclusive” (no two can happen at once) and “collectively exhaustive” 
(one of them is guaranteed to happen). 

45 In probability, it is typical to talk about a ’sample space’ rather than a ’state space’, but they both come to the same 
thing: a space of possible situations. 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 273 

The sample space for a coin flip might be {H, T}, standing for heads 
Example 13. 

• 
and tails. 
The sample space for a sequence of three coin flips might be {HHH,• 
HHT, HTH, HTT, THH, THT, TTH, TTT}: all possible sequences of 
three heads or tails. 

•	 The sample space for a robot navigating in a city might be the set of 
intersections in the city. 

•	 The sample space for a randomly generated document might be all 
strings of fewer than 1000 words drawn from a particular dictionary. 

An event is a subset of U; it will contain zero or more atomic events. 

An event in the three-coin-flip space might be that there are at least two 
Example 14. 

• 
heads: {HHH, HHT, HTH, THH}. 

•	 An event in the robot navigation problem might be that the robot is 
within one mile of MIT. 

•	 An event in the document domain might be that the document con
tains, in sequence, the words ’6.01’ and ’rules’. 

A probability measure Pr is a mapping from events to numbers that satisfy the following axioms: 

Pr(U) = 1 

Pr({}) = 0 

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2) 

Or, in English: 

•	 The probability that something will happen is 1. 

•	 The probability that nothing will happen is 0. 

•	 The probability that an atomic event in the set E1 or an atomic event in the set E2 will happen 
is the probability that an atomic event of E1 will happen plus the probability that an atomic 
event of E2 will happen, minus the probability that an atomic event that is in both E1 and 
E2 will happen (because those events effectively got counted twice in the sum of Pr(E1) and 
Pr(E2)). 

Armed with these axioms, we are prepared to do anything that can be done with discrete proba
bility! 

Conditional probability 
One of the most important operations in probabilistic reasoning is incorporating evidence into 
our models. So, we might wonder what the probability of an event is given or conditioned on 
some other relevant information we have received. For example, we might want to know the 
probability of getting a die roll greater than 3, if we already know that the die roll will be odd. 



∑ 

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 274 

We will write conditional probabilities as Pr(E1 | E2), pronounced “the probability of E1 given 
E2”, where E1 and E2 are events (subset of the atomic sample space). The formal definition of 
conditional probability is this: 

Pr(E1 ∩ E2)
Pr(E1 | E2) = . 

Pr(E2) 

In the figure below, E1 is the red ellipse, E2 is the blue ellipse, and E1∩E2 is the purple intersection. 
When we condition on E2, we restrict our attention entirely to the blue ellipse, and ask what 
percentage of the blue ellipse is also in the red ellipse. This is the same as asking for the ratio of 
the purple intersection to the whole blue ellipse. 

U

E1 E2

Example 15.	 What is the conditional probability of getting a die roll greater than 3, given 
that it will be odd? The probability of a die roll greater than 3 (in a fair six-
sided die) is 1/2. But if we know the roll will be odd, then we have to 
consider ratio of the probabilities of two events: that the die roll will be 
odd and greater than three, and that the die roll will be odd. This is 1/6 
divided by 1/2, which is 1/3. So, learning that the die roll will be odd 
decreases our belief that it will be greater than three. 

7.3 Random variables 
Just as some state spaces are naturally described in their factored form (it’s easier to say that there 
are 10 coins, each of which can be heads or tails, than to enumerate all 210 possible sequences), 
we often want to describe probability distributions over one or more variables. We will call a 
probability distribution that is described over one dimension of a state space a random variable. 

A discrete random variable is a discrete set of values, v1 . . . vn, and a mapping of those values to 
probabilities p1 . . . pn such that pi ∈ [0, 1] and i pi = 1. So, for instance, the random variable 
associated with flipping a somewhat biased coin might be {heads : 0.6, tails : 0.4}. We will speak 
of random variables having distributions: so, for example, two flips of the same biased coin are 
actually two different random variables, but they have the same distribution. 

In a world that is appropriately described with multiple random variables, the atomic event space 
is the Cartesian product of the value spaces of the variables. So, for example, consider two ran
dom variables, C for cavity and A for toothache. If they can each take on the values T or F (for 
true and false), then the universe is pairs of values, one for each variable: 

C× A = {(T, T), (T, F), (F, T), (F, F)} . 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 275 

We will systematically use the following notation when working with random variables: 
•	 A: capital letters stand for random variables; 
•	 a: small letters stand for possible values of random variables; so a is an element of the domain 

(possible set of values) of random variable A; 
•	 A = a: an equality statement with a random variable in it is an event: in this case, the event 

that random variable A has value a 

Some non-atomic events in a universe described by random variables A and C might be C = c 

(which includes atomic events with all possible values of A), or C = A (which includes all atomic 
events consisting of pairs of the same value). 

Joint distribution 
The joint distribution of a set of random variables is a function from elements of the product space 
to probability values that sum to 1 over the whole space. So, we would say that (C = c, A = a) 

(with a comma connecting the equalities), which is short for (C = c and A = a) is an atomic 
event in the joint distribution of C, A. 

In most of our examples, we’ll consider joint distributions of two random variables, but all of 
the ideas extend to joint distributions over any finite number of variables: if there are n random 
variables, then the domain of the joint distribution is all n-tuples of values, one drawn from the 
domain of each of the component random variables. We will write Pr(A, B, . . . , N) to stand for 
an entire joint distribution over two or more variables. 

Conditional distribution 
In section 7.2 we gave the basic definition of conditional probabilities, in terms of events on 
atomic subspaces. Sometimes, it will be useful to define conditional probabilities directly. A 
conditional probability distribution, written Pr(A | B), where A and B are random variables (we 
can generalize this so that they are groups of random variables), is a function from values, b, of 
B, to probability distributions on A. We can think of it this way: 

Pr(A | B) = λb. Pr(A | B = b) 

Here, we are using λ in the same way that it is used in Python: to say that this is a function that 
takes a value b as an argument, and returns a distribution over A. 

Example 16. Conditional distributions are often used to model the efficacy of medical 
tests. Consider two random variables: D, which has value disease if some
one has a disease and value nodisease otherwise; and T , which has value 
positive if the test comes out positive and value negative otherwise. We 
can characterize the efficacy of the test by specifying Pr(T | D), that is, a 
conditional distribution on the test results given whether a person has the 
disease. We might specify it as: 

Pr(T | D) = 

{ 
{positive : 0.99, negative : 0.01} if D = disease 
{positive : 0.001, negative : 0.999} if D = nodisease 



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 276 

7.3.1 Python representations of distributions 
We can represent distributions in Python in a number of ways. We’ll use a simple discrete dis
tribution class, called DDist, which stores its entries in a dictionary, where the elements of the 
sample space are the keys and their probabilities are the values. 

class DDist:

def __init__(self, dictionary):


self.d = dictionary


The primary method of the DDist class is prob, which takes as an argument an element of the 
domain of this distribution and returns the probability associated with it. If the element is not 
present in the dictionary, we return 0. This feature allows us to represent distributions over large 
sets efficiently, as long as they are sparse, in the sense of not having too many non-zero entries. 

def prob(self, elt):

if elt in self.d:


return self.d[elt]

else:


return 0


(The expression elt in self.d is a nicer way to say self.d.has_key(elt). That is a call to a 
built-in method of the Python dictionary class, which returns True if the dictionary contains the 
key elt and False otherwise.) 

It is useful to know the support of the distribution, which is a list of elements that have non
zero probability. Just in case there are some zero-probability elements stored explicitly in the 
dictionary, we filter to be sure they do not get returned. 

def support(self):

return [k for k in self.d.keys() if self.prob(k) > 0]


If we want to use the probability distribution to make a simulation, or to do something like shuffle 
or deal cards, it’s useful to be able to draw from it. This method returns an element from the 
sample space of the distribution, selected at random according to the specified distribution. 

def draw(self):

r = random.random()

sum = 0.0

for val in self.support():


sum += self.prob(val)

if r < sum:


return val


We can represent a joint distribution on two random variables simply as a DDist on pairs of their 
values. So, for example, this distribution 

dist.DDist({(0, 0) : 0.5, (0, 1): 0.2, (1, 0): 0.1, (1, 1): 0.2}) 

can be seen as the joint distribution on two random variables, each of which can take on values 0 
or 1. (Remember that expressions like key1 : v1, key2 : v2 create a new dictionary). 



{ 

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 277 

Finally, we will represent conditional distributions as Python procedures, from values of the con
ditioning variable to distributions on the conditioned variable. This distribution 

{positive : 0.99, negative : 0.01} if D = disease 
Pr(T | D) = 

{positive : 0.001, negative : 0.999} if D = nodisease 

would be represented in Python as 

def TgivenD(D):

if D == ’disease’:


return dist.DDist({’positive’ : 0.99, ’negative’ : 0.01})

elif D == ’nodisease’:


return dist.DDist({’positive’ : 0.001, ’negative’ : 0.999})

else:


raise Exception, ’invalid value for D’


To find a value for Pr(T = negative | D = disease), we would evaluate this Python expression: 

>>> TgivenD(’disease’).prob(’negative’) 

7.4 Operations on random variables 
Now that we can talk about random variables, that is, distributions over their sets of values, 
we can follow the PCAP principle to define a systematic way of combining them to make new 
distributions. In this section, we will define important basic operations. 

7.4.1 Constructing a joint distribution 
A convenient way to construct a joint distribution is as a product of factors. We can specify a joint 
distribution on C and A by the product of a distribution Pr(A) and a conditional distribution 
Pr(C | A) by computing the individual elements of the joint, for every pair of values a in the 
domain of A and c in the domain of C: 

Pr(C = c, A = a) = Pr(C = c) Pr(A = a | C = c) 

It is also true that 

Pr(C = c, A = a) = Pr(A = a) Pr(C = c | A = a) 

Exercise 7.1. Use the definition of conditional probability to verify that the above for
mulas are correct. 



{ 

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 278


Example 17. In the domain where the random variable C stands for whether a person 
has a cavity and A for whether they have a toothache, we might know: 
• The probability of a randomly chosen patient having a cavity: 

Pr(C) = {T : 0.15, F : 0.85} 

• The conditional probability of someone having a toothache given that 
they have a cavity: 

Pr(A | C) = 

{ 
{T : 0.333, F : 0.667} if C = T 

{T : 0.0588, F : 0.9412} if C = F 

Then we could construct the following table representing the joint distrib
ution: 

C 

T F 

A 
T 0.05 0.05 

F 0.1 0.8 

The numbers in the table make up the joint probability distribution. They 
are assignments of probability values to atomic events, which are complete 
specifications of the values of all of the random variables. For example, 
Pr(C = T, A = F) = 0.1; that is, the probability of the atomic event that 
random variable C has value T and random variable A has value F is 0.1. 
Other events can be made up of the union of these primitive events, and 
specified by the assignments of values to only some of the variables. So, 
for instance, the event A = T is really a set of primitive events: {(A = 

T, C = F), (A = T, C = T)}, which means that 
Pr(A = T) = Pr(A = T, C = T) + Pr(A = T, C = F) , 

which is just the sum of the row in the table. 

Here is another example of forming a joint distribution. Imagine that we are given the following 
distributions: 

Pr(A) = {a1 : 0.9, a2 : 0.1} 

{b1 : 0.7, b2 : 0.3} if A = a1
Pr(B | A) = 

{b1 : 0.2, b2 : 0.8} if A = a2 

You can visualize the joint distribution spatially, like this: 



∑ 

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 279


A = a1, B = b1

A = a1, B = b2

A = a2, B = b2

A = a2, B = b1

The sample space is divided vertically according to the distribution Pr(A), and then, for each 
value of A, it is divided horizontally according to the distribution Pr(B | A = a). This joint 
distribution is represented numerically by the table: 

A 

a1 a2 

B 
b1 

b2 

0.63 

0.27 

0.02 

0.08 

We can also think of this joint distribution as just another regular distribution on a larger state 
space: 

Pr(A, B) = {(a1, b1) : 0.63, (a1, b2) : 0.27, (a2, b1) : 0.02, (a2, b2) : 0.08} 

More generally, we can construct a joint distribution on an arbitrary number of random variables, 
Pr(V1, . . . , Vn), as follows: 

Pr(V1 = v1, . . . , Vn = vn) = Pr(V1 = v1 | V2 = v2, . . . , Vn = vn) 

Pr(V2 = v2 | V3 = v3, . . . , Vn = vn)· 

. . . 

Pr(Vn−1 = vn−1 | Vn = vn)· 

Pr(Vn = vn)· 

This can be done with the variables in any order. 

7.4.2 Marginalization 
A marginal distribution over any individual random variable can be obtained from the joint dis
tribution by summing over all assignments to the other random variables in the joint distribution. 
In two dimensional tables, this means summing the rows or the columns: 

Pr(A = a) = Pr(A = a, B = b) 

b 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 280


Example 18. In our example with toothaches and cavities, we can compute the marginal 
distributions: 

Pr(A) = {T : 0.1, F : 0.9} 

Pr(C) = {T : 0.15, F : 0.85} 

Although you can compute the marginal distributions from the joint distribution, you cannot in 
general compute the joint distribution from the marginal distributions!! In the very special 
case when two random variables A and B do not influence one another, we say that they are 
independent, which is mathematically defined as 

Pr(A = a, B = b) = Pr(A = a) Pr(B = b) . 

If we only knew the marginals of toothaches and cavities, and assumed they were independent, 
we would find that Pr(C = T, A = T) = 0.015, which is much less than the value in our joint 
distribution. This is because, although cavity and toothache are relatively rare events, they are 
highly dependent. 

7.4.3 Conditioning 
One more important operation on a joint distribution is conditioning. It is fundamentally the 
same operation as computing a conditional probability, but when the conditioning event (on the 
right hand side of the bar) is that a random variable has a particular value, then we get a nice 
simplification. So, for example, if we wanted to condition our joint toothache/cavity distribution 
on the event A = T , we could write Pr(C, A | A = T). But since the value for A is already made 
explicit in the conditioning event, we typically write this as Pr(C | A = T). It is obtained by: 

•	 Finding the row (or column) of the joint distribution corresponding to the conditioning event. 
In our example, it would be the row for A = T , which consists of Pr(A = T, C = T) and 
Pr(A = T, C = F). 

•	 Dividing each of the numbers in that row (or column) by the probability of the conditioning 
event, which is the marginal probability of that row (or column). In our example, we would 
divide 0.05 by 0.1 to get 

Pr(C | A = T) = {T : 0.5, F : 0.5} 

So, in this example, although a cavity is relatively unlikely, it becomes much more likely condi
tioned on knowing that the person has a toothache. 

We have described conditioning in the case that our distribution is only over two variables, but 
it applies to joint distributions over any number of variables. You just have to think of selecting 
the entries whose value for the specified random variable equals the specified value, and then 
renormalizing their probabilities so they sum to 1. 

7.4.4 Bayesian reasoning 
Frequently, for medical diagnosis or characterizing the quality of a sensor, it’s easiest to measure 
conditional probabilities of the form Pr(Symptom | Disease), indicating what proportion of dis
eased patients have a particular symptom. (These numbers are often more useful, because they 



∑ 

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 281 

tend to be the same everywhere, even though the proportion of the population that has disease 
may differ.) But in these cases, when a patient comes in and demonstrates some actual symptom 
s, we really want to know Pr(Disease | Symptom = s). We can compute that if we also know 
a prior or base rate distribution, Pr(Disease). The computation can be done in two steps, using 
operations we already know: 

1.	 Form the joint distribution: Pr(Disease, Symptom) 

2.	 Condition on the event Symptom = s, which means selecting the row (or column) of the joint 
distribution corresponding to Symptom = s and dividing through by Pr(Symptom = s). 

So, given an actual observation of symptoms s, we can determine a conditional distribution over 
Disease, by computing for every value of d, 

Pr(Symptom = s | Disease = d) Pr(Disease = d)
Pr(Disease = d | Symptom = s) =	 . 

Pr(Symptom = s) 

The formula, when written this way, is called Bayes’ Rule, after Rev. Thomas Bayes who first 
formulated this solution to the ’inverse probability problem,’ in the 18th century. 

7.4.5 Total probability 
Another common pattern of reasoning is sometimes known as the law of total probability. What 
if we have our basic distributions specified in an inconvenient form: we know, for example, Pr(A) 

and Pr(B | A), but what we really care about is Pr(B)? We can form the joint distribution over 
A and B, and then marginalize it by summing over values of A. To compute one entry of the 
resulting distribution on B, we would do: 

Pr(B = b) = Pr(B = b | A = a) Pr(A = a) 
a 

but it’s easier to think about as an operation on the whole distributions. 

7.4.6 Python operations on distributions 
We can implement the operations described in this section as operations on DDist instances. 

Constructing a joint distribution 
We start by defining a procedure that takes a distribution Pr(A), named PA, and a conditional 
distribution Pr(B | A), named PBgA, and returns a joint distribution Pr(A, B), represented as a 
Python dist.DDist instance. It must be the case that the domain of A in PA is the same as in 
PBgA. It creates a new instance of dist.DDist with entries (a, b) for all a with support in PA 
and b with support in PB. The Python expression PA.prob(a) corresponds to Pr(A = a); PBgA 
is a conditional probability distribution, so PBgA(a) is the distribution Pr(B | A = a) on B, and 
PBgA(a).prob(b) is Pr(B = b | A = a). 

So, for example, we can re-do our joint distribution on A and B as: 



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 282 

PA = dist.DDist({’a1’ : 0.9, ’a2’ : 0.1}) 
def PBgA(a): 

if a == ’a1’: 
return dist.DDist({’b1’ : 0.7, ’b2’ : 0.3}) 

else: 
return dist.DDist({’b1’ : 0.2, ’b2’ : 0.8}) 

>>> PAB = JDist(PA, PBgA)

>>> PAB

DDist((a1, b2): 0.270000, (a1, b1): 0.630000, (a2, b2): 0.080000, (a2, b1): 0.020000)


We have constructed a new joint distribution. We leave the implementation as an exercise. 

Marginalization 
Now, we can add a method to the DDist class to marginalize out a variable. It is only appropri
ately applied to instances of DDist whose domain is pairs or tuples of values (corresponding to a 
joint distribution). It takes, as input, the index of the variable that we want to marginalize out. 

It can be implemented using two utility procedures: removeElt takes a list and an index and 
returns a new list that is a copy of the first list with the element at the specified index removed; 
incrDictEntry takes a dictionary, a key, and a numeric increment and adds the increment to the 
value of the key, adding the key if it was not previously in the dictionary. 

def removeElt(items, i): 
result = items[:i] + items[i+1:] 
if len(result) == 1: 

return result[0] 
else: 

return result 

def incrDictEntry(d, k, v): 
if d.has_key(k): 

d[k] += v 
else: 

d[k] = v 

Now, we can understand marginalizeOut as making a new dictionary, with entries that have 
the variable at the specified index removed; the probability associated with each of these entries is 
the sum of the old entries that agree on the remaining indices. So, for example, we could take the 
joint distribution, PAB, that we defined above, and marginalize out the variable A (by specifying 
index 0) or B (by specifying index 1): 

>>> PAB.marginalizeOut(0) 
DDist(b1: 0.650000, b2: 0.350000) 
>>> PAB.marginalizeOut(1) 
DDist(a1: 0.900000, a2: 0.100000) 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 283 

Conditioning 
We can also add a conditionOnVar method to DDist which, like marginalizeOut, should only 
be applied to joint distributions. It takes as input an index of the value to be conditioned on, and a 
value for that variable, and returns a DDist on the remaining variables. It operates in three steps: 

•	 Collect all of the value-tuples in the joint distribution that have the specified value at the speci
fied index. This is the new universe of values, over which we will construct a distribution. 

•	 Compute the sum of the probabilities of those elements. 

•	 Create a new distribution by removing the elements at the specified index (they are redundant 
at this point, since they are all equal) and dividing the probability values by the sum of the 
probability mass in this set. The result is guaranteed to be a distribution in the sense that the 
probability values properly sum to 1. 

Now, we can compute, for example, the distribution on A, given that B = b1: 

>>> PAB.conditionOnVar(1, ’b1’) 
DDist(a1: 0.969231, a2: 0.030769) 

Note that this is not a conditional distribution, because it is not a function from values of B to 
distributions on A. At this point, it is simply a distribution on A. 

Exercise 7.2.	 Define a method condDist(self, index) of the DDist class that makes 
a new conditional probability distribution. Remember that a conditional 
distribution is not a distribution. It is a function that takes as input a value 
of the random variable we are conditioning on, and returns, as a result a 
probability distribution over the other variable(s). 
So, this method takes an index (of the variable we are conditioning on) and 
returns a conditional probability distribution of the other variables in the 
joint distribution, given the variable at the specified index. 
Answer: 

def condDist(self, index): 
return lambda val: self.conditionOnVar(index, val) 

Bayesian Evidence 
The operation of updating a distribution on a random variable A, given evidence in the form of 
the value b of a random variable B, can be implemented as a procedure that takes as arguments 
the prior distribution Pr(A), named PA, a conditional distribution Pr(B | A), named PBgA, and the 
actual evidence b, named b. It starts by constructing the joint distribution Pr(A, B) with JDist. 
Then, remembering that the order of the variables in the joint distribution is (A, B), it conditions 
on the variable with index 1 (that is, B) having value b, and returns the resulting distribution over 
A.


So, for example, given a prior distribution on the prevalence of disease in the population




Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 284 

pDis = dist.DDist({True: 0.001, False: 0.999}) 

and the conditional distribution of test results given disease: 

def pTestGivenDis(disease):

if disease:


return dist.DDist({True: 0.99, False: 0.01})

else:


return dist.DDist({True: 0.001, False: 0.999})


we can determine the probability that someone has the disease if the test is positive: 

>>> dist.bayesEvidence(pDis, pTestGivenDis, True)

DDist(False: 0.502262, True: 0.497738)


Exercise 7.3.	 Does the result above surprise you? What happens if the prevalence of 
disease in the population is one in a million? One in ten? 

Total Probability 
Finally, we can implement the law of total probability straightforwardly in Python. Given a dis
tribution Pr(A), called PA, and Pr(B | A), called PBgA, we compute Pr(B). We do this by con
structing the joint distribution and then marginalizing out A (which is the variable with index 
0). 

To compute the probability distribution of test results in the example above, we can do: 

>>> dist.totalProbability(pDis, pTestGivenDis)

DDist(False: 0.998011, True: 0.001989)


7.5 Modeling with distributions 
When we have a small number of discrete states, it is relatively easy to specify probability distri
butions. But, as domains become more complex, we will need to develop another PCAP system, 
just for constructing distributions. In this section, we’ll describe a collection of relatively stan
dard primitive distributions, and a method, called a mixture distribution for combining them, 
and show how they can be implemented in Python. 

7.5.1 Primitives 

Delta 
Sometimes we’d like to construct a distribution with all of the probability mass on a single el
ement. Here’s a handy way to create delta distributions, with a probability spike on a single 
element: 



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 285 

def DeltaDist(v): 
return DDist({v:1.0}) 

Uniform 
Another common distribution is the uniform distribution. On a discrete set of size n, it assigns 
probability 1/n to each of the elements: 

def UniformDist(elts): 
p = 1.0 / len(elts) 
return DDist(dict([(e, p) for e in elts])) 

Square 
There are some distributions that are particularly valuable in numeric spaces. Since we are only 
dealing with discrete distributions, we will consider distributions on the integers. 

One useful distribution on the integers is a square distribution. It is defined by parameters lo and 
hi, and assigns probability 

1 
p = 

hi − lo 

to all integers from lo to hi − 1. Here is a square distribution (from 60 to 80): 

0.050

0

0 100

Because it is non-zero on 20 values, those values have probability 0.05. 

Another useful distribution is a triangle distribution. It is defined by parameters peak and 
halfWidth. It defines a shape that has its maximum value at index peak, and has linearly decreas
ing values at each of halfWidth − 1 points on either side of the peak. The values at the indices are 
scaled so that they sum to 1. Here is a triangular distribution with peak 30 and half-width 20. 

0.050

0

0 100



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 286 

7.5.2 Mixture distribution 
We can combine distributions by mixing them. To create a mixture distribution, we specify two 
distributions, d1 and d2 and a mixing parameter p, with 0 6 p 6 1. The intuition is that, to 
draw an element from a mixture distribution, first we first flip a coin that comes up heads with 
probability p. If it is heads, then we make a random draw from d1 and return that; otherwise we 
make a random draw from d2 and return it. Another way to see it is that, if we think of a random 
variable D1 having distribution d1 and another random variable D2 having distribution d2, then 

Pr (x) = p Pr(D1 = x) + (1 − p) Pr(D2 = x) 
mix 

that is, the probability of an element x under the mixture distribution is p times its probability 
under distribution d1 plus 1 − p times its probability under distribution d2. 

Exercise 7.4. Convince yourself that if both d1 and d2 are proper probability distribu
tions, in that they sum to 1 over their domains, then any mixture of them 
will also be a proper probability distribution. 

We can make a mixture of the square and triangle distributions shown above, with mixture para
meter 0.5: 

0.025

0

0 100

Here it is, with mixture parameter 0.9, where the square is d1 and the triangle is d2: 

0.045

0

0 100

To implement a mixture distributions, we have two choices. One would be to go through the

supports of both component distributions and create a new explicit DDist. Below, we have taken

the ’lazy’ approach, similar to the way we handled signal composition. We define a new class that




Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 287 

stores the two component distributions and the mixture parameter, and computes the appropriate 
probabilities as necessary. 

Here are some example mixture distributions, created in Python and plotted below. 

t1 = dist.triangleDist(30, 20) 
t2 = dist.triangleDist(40, 20) 
t3 = dist.triangleDist(80, 10) 
s1 = dist.squareDist(0, 100) 
s2 = dist.squareDist(60, 80) 
m1 = dist.MixtureDist(t1, t2, 0.5) 
m2 = dist.MixtureDist(s1, s2, 0.95) 
m3 = dist.MixtureDist(t1, t3, 0.5) 
m4 = dist.MixtureDist(t1, t3, 0.9) 
m5 = dist.MixtureDist(m2, m4, 0.5) 
0.050

0

0 100

0.050

0

0 100

0.100

0

0 100

0.005

0

0 100

0.050

0

0 100

t1 t2 t3 s1 s2


0.037

0

0 100

0.007

0

0 100

0.050

0

0 100

0.045

0

0 100

0.024

0

0 100

m1 m2 m3 m4 m5 

7.6 Stochastic state machines 
Now we can return to the application of primary interest: there is a system moving through 
some sequence of states over time, but instead of getting to see the states, we only get to make 
a sequence of observations of the system, where the observations give partial, noisy information 
about the actual underlying state. The question is: what can we infer about the current state of 
the system give the history of observations we have made? 

As a very simple example, let’s consider a copy machine: we’ll model it in terms of two possible 
internal states: good and bad. But since we don’t get to see inside the machine, we can only make 
observations of the copies it generates; they can either be perfect, smudged, or all black. There is 
only one input we can generate to the system, which is to ask it to make a copy. 

We have to start by building a model of the system of interest. We can model this problem using 
a probabilistic generalization of state machines, called stochastic 46 state machines (SSMs). 

In an SSM, we model time as a discrete sequence of steps, and we can think about the state, input, 
and the observation at each step. So, we’ll use random variables S0, S1, S2, . . . to model the state 
at each time step the random variables O0, O1, . . . to model the observation at each time step, and 
the random variables I0, I1, . . . to model the input at each time step. 

Our problem will be to compute a probability distribution over the state at some time t + 1 given 
the past history of inputs and observations o0, i0, . . . , ot, it; that is, to compute 

46 ’Stochastic’ is a synonym for probabilistic. 



{ 

{ 

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 288 

Pr(St+1 | O0 = o0, I0 = i0, . . . , Ot = ot, It = it) . 

A stochastic state-machine model makes a strong assumption about the system: that the state at 
time t is sufficient to determine the probability distribution over the observation at time t and the 
state at time t + 1. This is the essence of what it means to be a state of the system; that is, that 
it summarizes all past history. Furthermore, we assume that the system is time-invariant, so that 
way the state at time 3 depends on the state and input at time 2 is the same as the way that the 
state at time 2 depends on the state and input at time 1, and so on; similarly for the observations. 

So, in order to specify our model of how this system works, we need to provide three probability 
distributions: 

Initial state distribution: We need to have some idea of the state that the machine will be in at • 
the very first step of time that we’re modeling. This is often also called the prior distribution 
on the state. We’ll write it as 

Pr(S0) . 

It will be a distribution over possible states of the system. 

•	 State transition model: Next, we need to specify how the state of the system will change over 
time. It is described by the conditional probability distribution 

Pr(St+1 | St, It) , 

which specifies for each possible old state r and input i, a probability distribution over the 
state the system will be in at time t + 1 if it had been in state r and received input i at time t. 
We will assume that this same probabilistic relationship holds for all times t. 

•	 Observation model: Finally, we need to specify how the observations we make of the system 
depend on its underlying state. This is often also called the sensor model. It is described by 
the conditional probability distribution 

Pr(Ot | St) , 

which specifies for each possible state of the system, s, a distribution over the observations 
that will be obtained when the system is in that state. 

7.6.1 Copy machine example 
We’ll specify a stochastic state-machine model for our copy machine. Because there is only a 
single possible input, to keep notation simple, we’ll omit the input throughout the example. 

Initial state distribution: • 

Pr(S0) = {good : 0.9, bad : 0.1} 

State transition model: • 

{good : 0.7, bad : 0.3} if St = good
Pr(St+1 | St) = 

{good : 0.1, bad : 0.9} if St = bad 

Observation model: • 

{perfect : 0.8, smudged : 0.1, black : 0.1} if St = good
Pr(Ot | St) = 

{perfect : 0.1, smudged : 0.7, black : 0.2} if St = bad 



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 289 

7.6.2 Representation in Python 
We can represent these basic distributions in Python using the DDist class that we have already 
developed. First, we have the initial state distribution, which is quite straightforward: 

initialStateDistribution = dist.DDist({’good’: 0.9, ’bad’: 0.1}) 

The observation model is simply a conditional probability distribution; that is, a procedure that 
takes a state as input and returns the appropriate distribution over observations. 

def observationModel(s):

if s == ’good’:


return dist.DDist({’perfect’ : 0.8, ’smudged’ : 0.1, ’black’ : 0.1})

else:


return dist.DDist({’perfect’ : 0.1, ’smudged’ : 0.7, ’black’ : 0.2})


The transition model is just a little bit trickier. For reasons that we will see later, it is most con
venient to organize the transition model as a procedure that takes an input i as input, and then 
returns a conditional probability distribution of Pr(St+1 | St, It = i). Remember that the condi
tional probability distribution is, itself, a procedure that takes an old state and returns a distrib
ution over new states. This seems particularly silly for the copy machine example, since we are 
ignoring the input, but we still have to make the definitions this way so that the types will match 
those of more complex models we will build later. 

def transitionModel(i):

def transitionGivenI(oldState):


if oldState == ’good’:

return dist.DDist({’good’ : 0.7, ’bad’ : 0.3})


else:

return dist.DDist({’good’ : 0.1, ’bad’ : 0.9})


return transitionGivenI


Finally, we can define a new class, called StochasticSM, which is a subclass of SM. We have had 
to generalize the SM class slightly, so that there is an option of supplying a startState method 
instead of a fixed start state, so that the actual starting state can be the result of calling a procedure. 
To get a starting state, it makes a random draw from the initial state distribution; to get the next 
values, it makes random draws from the transition and observation distributions: 

class StochasticSM(sm.SM):

def __init__(self, startDistribution, transitionDistribution,


observationDistribution): 
self.startDistribution = startDistribution 
self.transitionDistribution = transitionDistribution 
self.observationDistribution = observationDistribution 

def startState(self):

return self.startDistribution.draw()


def getNextValues(self, state, inp):

return (self.transitionDistribution(inp)(state).draw(),


self.observationDistribution(state).draw())




Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 290 

Now, we can define our copy machine: 

copyMachine = ssm.StochasticSM(initialStateDistribution,

transitionModel, observationModel)


Because StochasticSM is a subclass of SM, we can use the standard methods of SM. Here, we ask 
the copy machine to make 20 copies, and observe the sequence of outputs it generates: 

>>> copyMachine.transduce([’copy’]* 20) 
[’perfect’, ’smudged’, ’perfect’, ’perfect’, ’perfect’, ’perfect’,


’perfect’, ’smudged’, ’smudged’, ’black’, ’smudged’, ’black’,

’perfect’, ’perfect’, ’black’, ’perfect’, ’smudged’, ’smudged’,

’black’, ’smudged’]


7.7 State estimation 
Now, given the model of the way a system changes over time, and how its outputs reflect its 
internal state, we can do state estimation. The problem of state estimation is to take a sequence of 
inputs and observations, and determine the sequence of hidden states of the system. Of course, 
we won’t be able to determine that sequence exactly, but we can derive some useful probability 
distributions. 

We will concentrate on the problem of filtering or sequential state estimation, in which we imag
ine sitting and watching the stream of inputs and observations go by, and we are required, on 
each step, to produce a state estimate, in the form 

Pr(St+1 | O0, . . . , Ot, I0, . . . , It) 

We will develop a procedure for doing this by working through a few steps of the example with 
the copy machine, and then present it more generally. 

7.7.1 Our first copy 
Let’s assume we get a brand new copy machine in the mail, and we think it is probably (0.9) 
good, but we’re not entirely sure. We print out a page, and it looks perfect. Yay! Now, what do 
we believe about the state of the machine? We’d like to compute 

Pr(S1 | O0 = perfect) . 

We’ll do this in two steps. First, we’ll consider what information we have gained about the ma
chine’s state at time 0 from the observation, and then we’ll consider what state it might have 
transitioned to on step 1. 

What information do we gain from knowing that the machine’s first copy was perfect? We can use 
Bayesian reasoning to form the joint distribution between the state and observations in general, 
and then condition on the observation we actual received. The joint distribution has the form 



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 291


O 

perfect smudged black 

good 0.72 0.09 0.09 
S 

bad 0.01 0.07 0.02 

Now, conditioning on the actual observation, O0 = perfect, we extract the column corresponding 
to the observation, {0.72, 0.01}, and divide by the sum, 0.73, to get the distribution 

Pr(S0 | O0 = perfect) = {good : 0.986, bad : 0.014} 

Here is a schematic version of this update rule, which is a good way to think about computing it 
by hand. Rather than creating the whole joint distribution and then conditioning by selecting out 
a single column, we just create the column we know we’re going to need (based on the observation 
we got): 

0.10.9

good bad
S

Pr(S0)

0.010.72

.014.986

Pr(O0 = perfect | S)

Pr(S0 | O0 = perfect)

Pr(O0 = perfect and S0)

divide by 0.73

0.8 0.1

Because we will use it in later calculations, we will define B′0 as an abbreviation: 

B′0 = Pr(S0 | O0 = perfect) ; 

that is, our belief that the system is in state s on the 0th step, after having taken the actual obser
vation o0 into account. This update strategy computes B′0(s) for all s, which we’ll need in order 
to do further calculations. 

Now, we can think about the consequences of the passage of one step of time. We’d like to com
pute Pr(S1 | O0 = perfect). Note that we are not yet thinking about the observation we’ll get on 
step 1; just what we know about the machine on step 1 having observed a perfect copy at step 0. 

What matters is the probability of making transitions between states at time 0 and states at time 1. 
We can make this relationship clear by constructing the joint probability distribution on S0 and S1 

(it is actually conditioned on O0 = perfect). So, Pr(S0, S1 | O0 = perfect) can be constructed from 
Pr(S0 | O0 = perfect) (which, it is important to remember, is a distribution on S0) and Pr(S1 | S0), 
which is our transition model: 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 292


S1 

good bad 

S0 
good 
bad 

0.690 

0.001 

0.296 

0.012 

Now, we have never really known the value of S0 for sure, and we can never really know it; we’d 
like to concentrate all of our information in a representation of our knowledge about S1. We can 
do that by computing the marginal distribution on S1 from this joint. Summing up the columns, 
we get 

Pr(S1 | O0 = perfect) = {good : 0.692, bad : 0.308} 

This is an application of the law of total probability. 

We’ll give this distribution, Pr(S1 | O0 = perfect), that is, everything we know about the machine

after the first observation and transition, the abbreviation B1.


Here is a schematic version of the transition update:


.014.986Pr(S0 | O0 = perfect)

0.3
0.9

.308.692

good bad

0.7
0.1

Pr(S1 | O0 = perfect)

Pr(S1 | S0)

You can see that there are two ways the copier could be in a good state at time 1: because it 
was in a good state at time 0 (probability 0.986) and made a transition to a good state at time 1 
(probability 0.7) or because it was in a bad state at time 0 (probability 0.014) and made a transition 
to a good state at time 1 (probability 0.1). So, the resulting probability of being in a good state is 
0.986 0.7 + 0.014 0.1 = 0.692. The reasoning for ending in a bad state is the same. · · 

7.7.2 Our second copy 
Now, let’s imagine we print another page, and it’s smudged. We want to compute Pr(S2 | O0 = 

perfect, O1 = smudged). This can be computed in two stages as before. We start with B1, which 
already has the information that O0 = perfect incorporated into it. Our job will be to fold in the 
information that O1 = smudged, and then the passage of another step of time. 

1.	 Construct a joint distribution from B1 and Pr(O1 | S1), and condition on O1 = smudged to get 
B′1. This is a Bayesian reasoning step. 

2.	 Construct a joint distribution from B′1 and Pr(S2 | S1) and marginalize out S1 to get B2. This 
is a law-of-total-probability step. 



Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 293


.758.242

0.3
0.9

.754.246

0.7
0.1

.308.692

good bad
S

.216.069

divide by 0.285

0.1 0.7

Pr(S2 | S1)

Pr(S2 | O0 = perfect , O1 = smudged)

Pr(S1 | O0 = perfect , O1 = smudged)

Pr(O1 = smudged and S1 | O0 = perfect)

Pr(O1 = smudged | S1)

Pr(S1 | O0 = perfect)

Ow. Now we’re pretty sure our copy machine is no good. Planned obsolescence strikes again! 

7.8 General state estimation 
Now we’ll write out the state-update procedure for SSMs in general. As a reminder, here are the 
random variables involved: 

•	 State at each time S0, . . . , ST 

•	 Observation at each time O0, . . . , OT 

• Input at each time I0, . . . , IT


Here are the components of the model:


•	 Initial distribution Pr(S0) 

•	 Observation distribution Pr(Ot | St). Because the process is time-invariant, this is the same 
for all t. 

•	 Transition distribution Pr(St+1 | St, It). Because the process is time-invariant, this is the 
same for all t. Think of i as selecting a particular conditional transition distribution to be used 
in the update. 

Now, here is the update procedure. Assume that we have a belief state at time t, corresponding 
to Pr(St | O0..t−1 = o0..t−1). Then we proceed in two steps: 

•	 Observation update, given ot: 

Pr(St | O0..t = o0..t, I0..t = i0..t) 

Pr(Ot = ot | St) Pr(St | O0..t−1 = o0..t−1, I0..t−1 = i0..t−1) 
= . 

Pr(Ot = ot | O0..t−1 = o0..t−1, I0..t−1 = i0..t−1) 



∑ 

∑ 

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 294 

• Transition update, given it: 

Pr(St+1 | O0..t = o0..t, I0..t = i0..t) 

= Pr(St+1 | St = r, It = it) Pr(St = r | O0..t = o0..t, I0..t−1 = i0..t−1) . 
r 

A very important thing to see about these definitions is that they enable us to build what is known 
as a recursive state estimator. (Unfortunately, this is a different use of the term “recursive” than 
we’re used to from programming languages). If we define our belief at time t, 

Bt = Pr(St | O0..t−1 = o0..t−1, I0..t−1 = i0..t−1) 

and our belief after making the observation update to be 

B′t = Pr(St | O0..t = o0..t, I0..t−1 = i0..t−1) , 

then after each observation and transition, we can update our belief state, to get a new Bt. Then, 
we can forget the particular observation we had, and just use the Bt and ot to compute Bt+1. 

Algorithmically, we can run a loop of the form: 

• Condition on actual observation Ot = ot. 

B′(s) = ∑ Pr(Ot = ot | St = s)B(s)

Pr(Ot = ot | St = r)B(r)
r 

• Make transition based on input It = it. 

B(s) = Pr(St+1 = s | St = r, It = it)B
′(r)


r


where B is initialized to be our initial belief about the state of the system. 

7.8.1 Python 
We can implement this state estimation process straightforwardly in Python. The nicest way to 
think of a state estimator is, itself, as a state machine. The state of the state estimator is B, the 
belief state, which is a probability distribution over the states of the SSM whose state we are 
estimating. The state estimator takes an SSM model at initialization time. At each step, the input 
to the state estimator is an (o, i) pair, specifying the observation from and the input to the machine 
on the current step; the output of the state estimator is a probability distribution, represented as a 
dist.DDist over the states of the underlying system. 

The initial state of the state estimator is the initial state distribution of the underlying machine: 

class StateEstimator(sm.SM): 
def __init__(self, model):


self.model = model

self.startState = model.startDistribution


Now, to get the next values of the state estimator, we perform the observation and transition up
dates, as described mathematically above. We observe that the observation update is an instance 



Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 295 

of the Bayes evidence procedure, with the current belief as the prior, the observation model as 
the conditional distribution, and the actual observation o as the value we’re conditioning on. We 
also observe that the transition update is an instance of the law of total probability: we select 
the appropriate state transition distribution depending on the input i, then use it to make a joint 
distribution over St and St+1, then marginalize out St, because we want to represent all of our 
information as a distribution on St+1. The output of the state estimator is the same as its state. 

Now, we can do state estimation on our copy machine. We might have this sequence of observa
tions and inputs: 

copyData = [(’perfect’, ’copy’), (’smudged’, ’copy’)] 

which means that we saw a perfect page, made a copy, saw a smudged page, and made another 
copy. Now, we can make a state estimator, using the model we defined in the previous section, 
and feed the data into the estimator: 

>>> copyMachineSE = se.StateEstimator(copyMachine)

>>> copyMachineSE.transduce(copyData)

[DDist(bad: 0.308219, good: 0.691781), DDist(bad: 0.754327, good: 0.245673)]


Note that these are the same distributions we got when we did the state estimation by hand. 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

