
Software Lab 14	 6.01 – Fall 2011

Plan From Outer Space 

Goals:	 In this week’s software and design labs, you will build a system that can run 
on the robot, allowing it to make a 2D world map of the obstacles around it 
and plan a path to a desired destination. 
This software lab focuses on geting the basic planning infrastructure up and 
running. You will: 
• Model the world in which the robot moves as a discrete 2D grid 
• Write a state machine representing the robot’s dynamics in the grid world 

• Apply A* search and uniform cost search to build a planner which finds 

optimal paths for the robot to move among states in the discrete map of 
the world 

Resources: This lab should be done individually.

Do athrun 6.01 getFiles. The relevant files in the distribution are:

• plannerStandaloneSkeleton.py: file to write your code in

• mapTestWorld.py, bigPlanWorld.py: files describing world configurations that you 

can read in as specifications of planning problems. 

Read Section 8.5 of the readings, if you haven’t already. 

Our goal in this lab is to build a planner, which provides a proposed path for a robot to navigate 
to a goal, given a map of obstacles for the robot’s motion. We begin by formulating the basic 
planning problem as a search in a two-dimensional grid of states, build a machine that makes a 
map using sonar data, and make the robot dynamically replan new paths through the world as its 
map changes. 

1 Grid Map Representation 
Consider a circular robot1 . We will be making plans for this robot moving around a simulated 
world containing obstacles. The state of the robot can be described by its pose: x in meters, y in 
meters, and θ in radians: (x, y) is the location of the robot’s center and θ is the angle that the front 
of the robot makes relative to the x axis. We will use instances of the util.Pose class to represent 
the robot’s poses in the real world. We can obtain the util.Point representing the x, y position 
of a pose by pose.point(). 

Planning paths as continuous curves in x, y, θ is very hard, so we will instead model the robot’s 
state space somewhat more coarsely. We will ignore orientation altogether and we will discretize 

1 Not unlike a spherical cow. http://en.wikipedia.org/wiki/Spherical_cow 

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].




1


http://en.wikipedia.org/wiki/Spherical_cow
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util.Pose-class.html
http:mapTestWorld.py
http://en.wikipedia.org/wiki/Spherical_cow


Software Lab 14 6.01 Fall 2011 

the x, y positions of the robot into a grid, with indices ranging from 0 to xN - 1 for x and from 
0 to yN - 1 for y. 

So, a state for the robot, in the space that we will search for plans, is described by the coordinates 
of a grid cell – a tuple of two indices, (ix, iy). It is important to be clear about when you are 
working with: 

a real world pose (an instance of util.Pose with coordinates in meters and radians), or • 

a real world point (an instance of util.Point with coordinates in meters), or • 

indices describing a grid cell (a tuple of two indices in a grid). • 

The figure below shows the robot in a world where the x and y coordinates vary from −1m to +1m, 
which is discretized into 6 intervals in each dimension, resulting in 36 grid cells. The lower-left 
cell always has indices (0, 0), with x increasing to the right and y increasing going up. 

(-1.0,-1.0)

(1.0,1.0)

(0,0) (1,0)

(0,1)

(5,5)

start

goal

We will use the BasicGridMap class (defined in lib601.basicGridMap.py) to represent the 
grid and indicate which grid cells contain obstacles. We can create a grid with obstacles from a 
world file of the kind that we use in soar. These world files specify the min and max values for x 
and y as well as boundary lines for the walls and obstacles. 

These are the most important methods and attributes of the class BasicGridMap (more detailed 
documentation is available in the software documentation : 

pointToIndices(self, point): takes a util.Point representing coordinates of the robot • 
in the real world map and returns a tuple of integer indices, representing the grid cell of the 
robot. 
indicesToPoint(self, indices): takes a tuple of integer indices, representing the grid • 
cell of the robot and returns a util.Point representing coordinates of of the center of that 
cell in the real world map. 
xN, yN: number of cells in the x and y dimensions• 

robotCanOccupy(self, indices): returns True if the robot can be positioned with its cen• 
ter in this cell and not cause a collision with an obstacle in the world, and False otherwise. 
xStep: attribute representing the length, in meters, of a side of a grid cell; we assume the cells • 
are square (so yStep equals xStep). 

Step 1. 

2


http://ocw.mit.edu/ans7870/6/6.01sc/documentation/basicGridMap-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/basicGridMap-module.html


Software Lab 14	 6.01 Fall 2011 

Wk.14.1.1	 Solve this tutor problem to develop an understanding of the grid map rep
resentation. 

2 Grid Dynamics 
Now we will think about how to design a state machine class that represents the dynamics of the 
robot on a grid map. An instance of the GridDynamics class (which you will write) will be a state 
machine, whose inputs are actions the robot can take to move on the grid, and whose states are 
pairs of grid indices indicating the robot’s position. 

We will use uniform cost search (UCS) to find shortest paths through the world defined by the grid 
dynamics: UCS requires each action to be annotated by its cost, so we will use the output of the 
state machine to encode the cost of each action. 

The GridDynamics class needs to provide a legalInputs attribute and a getNextValues 
method. It does not need to supply a done method or a starting state: we will want to specify the 
starting state and the goal when we call the search procedure. 

The state should be a pair (ix, iy) of indices representing the robot’s position in the grid. 

The state machine should allow 8 possible actions: moving to the four directly adjacent and the 
four diagonally adjacent grid cells. The elements of legalInputs will be the names of each of 
these actions. It doesn’t matter what names you give the actions; in fact, the names can be tuples 
that describe the actions. 

Remember that the input of the state machine will be one of the elements of the list of legal in
puts; and the output of the getNextValues method should be a pair (nextState, cost), where 
nextState is an (ix, iy) pair, and cost is a positive number representing the cost of taking 
that action. The cost of each move should be the distance the robot will travel, measured in me
ters (the length of a grid-cell side, in meters, is stored in the xStep attribute of instances of ba
sicGridMap.BasicGridMap). Remember that a diagonal motion is longer than a horizontal or 
vertical one. 

The __init__ method of your GridDynamics class should take as input an instance of the 
BasicGridMap class, as described in section 1. 

When implementing getNextValues be sure to consider the following: 
If the robot attempts to move into a square that it cannot occupy, it should stay where it was, • 
but the cost should be the same as if the move had been legal.

You do not need to worry about moving off the boundary of the map, because the boundary
• 
squares will already be marked as not occupiable.

You do, however, have to be extra careful about moving diagonally: when your current and
• 
target squares are free, but one of the other two squares that are adjacent to both the current 
and target squares is occupied, it is possible that the robot will have a collision. Such a move 
should be treated in the same way as attempting to move into a square that is occupied. 
When we connect up with the map maker it may occasionally happen that the grid cell the robot is • 
currently in is suddenly marked as not occupiable; your dynamics should allow the robot to move out of 
a cell that is not occupiable, as long as the cell it is moving into is occupiable. 

3




Software Lab 14	 6.01 Fall 2011


Step 2.	 Implement the GridDynamics class in the file plannerStandaloneSkeleton.py. 

Check Yourself 1. This procedure is defined in plannerStandaloneSkeleton.py: 

def testGridDynamics(): 
gm = TestGridMap(0.15) 
print ’For TestGridMap(0.15):’ 
r = GridDynamics(gm) 
print ’legalInputs’, util.prettyString(r.legalInputs) 
ans1 = [r.getNextValues((1,1), a) for a in r.legalInputs] 
print ’starting from (1,1)’, util.prettyString(ans1) 
ans2 = [r.getNextValues((2,3), a) for a in r.legalInputs] 
print ’starting from (2,3)’, util.prettyString(ans2) 
ans3 = [r.getNextValues((3, 2), a) for a in r.legalInputs] 
print ’starting from (3,2)’, util.prettyString(ans3) 

gm2 = TestGridMap(0.4)

print ’For TestGridMap(0.4):’

r2 = GridDynamics(gm2)

ans4 = [r2.getNextValues((2,3), a) for a in r2.legalInputs]

print ’starting from (2,3)’, util.prettyString(ans4)


It creates two different instances of GridDynamics, tests them, and prints 
out the results. Be sure you understand what the results should be. Note 
that the TestGridMap class is a simplified version of the BasicGridMap 
class with a small fixed grid; it’s only useful only for testing your dynamics. 
Each time we create an instance of TestGridMap, a window will pop up 
showing the map (it’s basically the same in both cases, except for the world 
is bigger in the second (the same number of cells, but they are larger)). 

Step 3.	 Test your code by running testGridDynamics() or other test cases you find helpful, and be sure 
it is correct. 

Step 4.	 Note that three of the test cases in the tutor problem are the same as the first three test cases in 
our testGridDynamics; but the answers may look different because we are iterating over your 
legalInputs attribute in one case, and our legalInputs attribute in the other, and they may be 
in a different order. The tutor takes that into account when checking. 

Wk.14.1.2	 Paste your GridDynamics class definition and any helper procedures it 
needs into this tutor problem; check it and submit. 

3 Making a plan and sticking to it 
Now that we have a state machine that represents the dynamics of our domain, we can run search 
algorithms on that state machine to find good paths through the space. 

We want to construct a procedure 

4


http:plannerStandaloneSkeleton.py


Software Lab 14	 6.01 Fall 2011


planner(initialPose, goalPoint, worldPath, gridSquareSize) 

that plans a path using ucSearch.smSearch on the grid dynamics of a grid map. It should draw 
the resulting path in the map, and return it. 

Step 5.	 Implement the planner procedure in plannerStandaloneSkeleton.py. It should return the 
plan found by the search. 

You need to pass a grid map as an argument to your GridDynamics class initializer. You can create 
a grid map corresponding to a soar world with 

basicGridMap.BasicGridMap(worldPath, gridSquareSize) 

where worldPath is a string representing the name of a file containing a soar world definition, 
and gridSquareSize is the size, in meters, of a side of each grid cell. Don’t worry about what 
worldPath needs to be; just take the argument you’re given and pass it through to initialize the 
BasicGridMap instance. 

Then, you use ucSearch.smSearch (see the documentation on the class website) to search that 
machine for a path from the initial pose to the goal point. You will need to convert both the initial 
pose and the goal point into grid indices for planning. 

When a BasicGridMap is created, it will create a new window, displaying the obstacles in the 
world. Your planner should draw the path it finds in that window. The BasicGridMap class 
provides the method drawPath(self, listOfIndices), where listOfIndices is of the form 
[(ix1, iy1), (ix2, iy2), ...], specifying a list of grid-index pairs. It draws the starting 
cell in purple, the ending cell in green, and the rest in blue. Remember that the plan returned by 
the search is a list of (action, state) tuples, so you cannot pass that in directly. 

To get the algorithm to display the states it is visiting, define your goal test function (inside the 
planner procedure) to have this form: 

def g(s):

gm.drawSquare(s, ’gray’)

return yourGoalTestHere


where gm is the name of your instance of BasicGridMap, s is a pair of grid indices, and your-
GoalTestHere is the actual expression that you are testing to see whether s is a goal state. 

Step 6.	 At the top of plannerStandaloneSkeleton.py, there are definitions of two worlds you can test 
in, each with a reasonable start and goal point and grid square size specified. Test your procedure 
in a world by running plannerStandaloneSkeleton.py in Idle (be sure to start Idle with -n, so 
you can see the graphics), and then evaluating, for example, 

testPlanner(mapTestWorld) 

You should see a map window pop up, first showing the obstacles, the states as they are visited, 
and then, when the planner has completed, the path you drew. 

5


http://ocw.mit.edu/ans7870/6/6.01sc/documentation/ucSearch-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/ucSearch-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/basicGridMap-module.html
http:plannerStandaloneSkeleton.py
http:plannerStandaloneSkeleton.py


Software Lab 14	 6.01 Fall 2011 

Check Yourself 2.	 In mapTestWorld.py with the discretization, start, and goal as defined in 
plannerStandaloneSkeleton.py, you should find a solution with cost 
about 6.7 (that is, a path about 6.7 m long.) The search should visit about 
800 nodes and expand about 270 states. Be sure you understand why some 
squares are being colored gray. Does this search seem efficient? 

Step 7.	 Read Section 8.6 of the readings, if you haven’t already. 

Let us now try to improve the speed of the search algorithm, by employing a heuristic function 
to prune the search tree. As we saw in lecture and is described in the lecture notes, the use of 
heuristics with suitable properties – that is admissible heuristics, can lead to significant performance 
gains while still guaranteeing that a shortest path will be found. We will use the popular and well 
known A* algorithm, which is nothing more than the uniform cost search algorithm with an added 
heuristic cost function. 

Think of a suitable admissible heuristic, implement it, and see how it affects the planning process. 
Be sure that your heuristic is expressed in the same units as the cost function. 

Check Yourself 3.	 Test your heuristic search, first, in mapTestWorld. You should find that 
it doesn’t make any difference in the length of the solution, though it may 
choose a slightly different path. You should find, however, that the number 
of nodes visited goes down to about 500 and the number of states expanded 
down to about 150. 

p 8.	 Now, test in bigPlanWorld with and without the heuristic. You should see a very noticable dif
ference in the number of nodes expanded. Keep screenshots showing the paths and visited grid 
cells with and without the heuristic. 

Checkoff 1. Wk.14.1.3: Demonstrate your search running in bigPlanWorld.py with 
the heuristic function. Compare its behavior to the search without a heuris
tic function. Explain the difference in visited states. 

Ste

6


http:plannerStandaloneSkeleton.py


MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

