
Software Lab 12 6.01 – Fall 2011

I think therefore where am I

Goals: In this lab we look at the general state estimation algorithm. You will:
• Implement state estimation for general stochastic state machines using the

procedure we showed graphically in the lecture and the readings.
• Prepare for using this algorithm to localize robots in hallways.

Resources: This lab should be done individually.
Do athrun 6.01 getFiles. The relevant file (in ~/Desktop/6.01/swLab12) is
• swLab12Work.py: code for building and testing the state estimation algorithm.

1 Introduction
When we have a system with internal state that we cannot observe directly, then we can consider
the problem of state estimation, which is trying to understand something about the internal hidden
state of the system based on observations we can make that are related to its state. We have seen
examples of such systems, including:
• A copy machine, where the hidden state is condition of its internal machinery, the actions we

can take are to make copies, and the observations are the quality of the copies.
• A robot moving through a hallway, where the hidden state is the location of the robot, the

actions we can take are to move to the east and west, and the observations are colors (which
may not always accurately reflect the true underlying colors of the walls).

State estimation is the process of taking in a sequence of inputs we have given to the system (we
sometimes call them actions) and observations we have made of the system, and computing a
probability distribution over the hidden states of the system. In this software lab and the next
design lab, we’ll use basic state estimation to build a system that estimates the robot’s pose, based
on noisy sonar and odometry readings.

We’ll start by building up some familiarity with stochastic state machines, then we’ll build the
core state estimation algorithm, then we’ll look at the application of this algoritm in robot local
ization, in preparation for Design Lab 13.

2 Stochastic state machines
A state estimator needs to know a model of the system whose state it is trying to estimate. This
model contains three crucial components:
• initial state distribution

• state transition model
• observation model

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].

1

Software Lab 12 6.01 Fall 2011

You had practice, last week, specifying state transition and observation models for the hallway
domain.

We will collect these three components together into instances of a Python class, called
ssm.StochasticSM. It is described in section 7.5 of the readings: what matters most to us are
the three attributes startDistribution, transitionDistribution, and observationDis
tribution.

Here is an example ssm.StochasticSM definition for a hallway world in which there are five
rooms with colors white, white, green, white, white. The internal states are the integers 0 through
4 representing which room the robot is really in, the inputs are integers -4 through 4 representing
an attempt to move that many squares, and the observations are strings representing colors.

def observationModel(s):
All of the rooms in our world have white walls, except for room
2, which has green walls; observations are wrong with
probability 0.1
if s == 2:

return dist.DDist({’green’ : 0.9, ’white’ : 0.1})

else:

return dist.DDist({’white’ : 0.9, ’green’ : 0.1})

def transitionModel(action):
def transGivenA(oldS):

Robot moves to the nominal new location (that is, the

old location plus the action) with probability 0.8; some

chance that it moves one step too little, or one step too

much. Be careful not to run off the end of the world.

nominalNewS = oldS + action

This is from Wk.11.1.2, Part 3

d = {}

dist.incrDictEntry(d, util.clip(nominalNewS, 0, 5), 0.8)

dist.incrDictEntry(d, util.clip(nominalNewS+1, 0, 5), 0.1)

dist.incrDictEntry(d, util.clip(nominalNewS-1, 0, 5), 0.1)

return dist.DDist(d)

return transGivenA

simpleHallway = ssm.StochasticSM(dist.UniformDist(range(5)),
transitionModel,
observationModel)

Stochastic state machines have a transduce method, which takes a list of inputs and generates a
list of outputs. Because they are stochastic (probabilistic), however, several different runs with the
same input sequence may generate different output sequences. This is because the starting state,
each state transition, and each output is, in general, chosen probabilistically based on the specified
distributions.

So, for example, 10 trips down the hallway, each of which is supposed to be made up of four steps
to the right, might generate output like this:

>>> for i in range(10):
print simpleHallway.transduce([1, 1, 1, 1])

[’white’, ’green’, ’white’, ’green’]
[’green’, ’white’, ’white’, ’white’]

2

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/ssm.StochasticSM-class.html

Software Lab 12	 6.01 Fall 2011

[’white’, ’green’, ’white’, ’white’]
[’white’, ’green’, ’white’, ’white’]
[’white’, ’green’, ’white’, ’white’]
[’white’, ’white’, ’white’, ’white’]
[’white’, ’green’, ’green’, ’white’]
[’white’, ’green’, ’white’, ’white’]
[’white’, ’white’, ’white’, ’white’]
[’white’, ’white’, ’white’, ’white’]

Step 1.

Wk.12.2.1 Do this tutor problem to get practice with the types of the components of
a stochastic state machine.

3 State Estimation
Now, we’re going to take the cool-but-potentially-confusing step of making the state estimator. A
state estimator is, itself, an instance of the state machine class sm.SM: it is a regular deterministic
state machine. Its job is to take inputs that are pairs, (o, i), where o is the observation that we
made of some system at some time t and i is the input that was given to the system at time t.
The internal state of the state estimator is a belief state, or probability distribution over the possible
hidden states of the system whose internal state we are trying to estimate. The output of the state
estimator will be the same as its internal state.
To make an instance of a state estimator, we pass in a model of the system whose state we are
trying to estimate, in the form of a stochastic state machine. So, for example, if we wanted to
try to estimate the robot’s position in the simple hallway described above, we could make a state
estimator:

hallwayLocalizer	 = se.StateEstimator(simpleHallway)

Now, hallwayLocalizer is a regular old state machine, and we can use familiar methods, like
transduce on it. Here, we feed in a sequence of observation-action pairs, asking what we believe
about the robot’s location after it observes white, moves to the right one square, observes white
again, moves to the right one square, observes green, and then stays where it is:

>>> hallwayLocalizer.transduce([(’white’, 1), (’white’, 1), (’green’, 0)])
[DDist(0: 0.024324, 1: 0.218919, 2: 0.221622, 3: 0.070270, 4: 0.464865),

DDist(0: 0.003029, 1: 0.051496, 2: 0.224196, 3: 0.060546, 4: 0.660733),

DDist(0: 0.002819, 1: 0.087084, 2: 0.581842, 3: 0.113220, 4: 0.215035)]

The result of transduce is a list of three belief states.

Check Yourself 1.	 Be sure the results of transduce shown above make sense to you. If they
don’t, ask a staff member for clarification.

As we observed in section 7.7.1 of the course readings, the state estimation procedure can be seen
as taking two steps:

3

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm.SM-class.html

Software Lab 12	 6.01 Fall 2011

1.	 Doing a step of Bayesian evidence updating, in which we update the current belief state
based on the actual observation received, using the observation distribution stored in the
ssm.StochasticSM that is the model of the underlying system.

2.	 Then, using that resulting intermediate belief, doing an update using the law of total probabil
ity to apply the transition distribution appropriate for the input that was given to the underly
ing system.

Given the library of methods we have developed for operating on distributions, this is very
straightforward to implement in Python. The starting state of the state estimator is just the initial
state distribution of the SSM. To get the next values (that is, the next belief state of the state esti
mator), we do a step of Bayes evidence with the observation and an application of the law of total
probability with a transition distribution that depends on the input.

class StateEstimator(sm.SM):
def __init__(self, model):

self.model = model
self.startState = model.startDistribution

def getNextValues(self, state, inp):
(o, i) = inp
sGo = dist.bayesEvidence(state, self.model.observationDistribution, o)
dSPrime = dist.totalProbability(sGo,

self.model.transitionDistribution(i))
return (dSPrime, dSPrime)

This code works fine, and is conceptually very simple, but each step is fairly inefficent. Our im
plementation of the bayesEvidence method (from Wk.10.1.7) actually creates a whole joint dis
tribution between the state and observation, and then conditions on the observation, selecting a
single row of the joint. We can make this more efficient by more closely mirroring the procedure
we showed graphically in the lecture and the readings: multiplying the probability of each state
s in the belief state by Pr(o | s), and then normalizing it.
In a similar way, our implementation of totalProbability (also from Wk.10.1.7) is also quite
inefficient. It constructs the entire joint distribution between s (the state at time t) and sPrime
(the state at time t + 1), and then immediately marginalizes out s. Again, we can more closely
emulate the procedure shown graphically in the lecture and the readings: making a new empty
distribution over sPrime, then iterating over the states s, and adding, to each state sPrime the
probability of being in state s times the probability of making a transition to state sPrime, given
the input.
Your job is to implement the StateEstimator.getNextValues method. We would encourage
you to write two internal helper procedures, one for Bayes evidence, and one for total probability,
that have the same results as our old implementations, but which are more efficient.
Rules:

Never access the dictionary of a distribution directly (use the prob method instead). •
Do not modify any of the distributions in the model. If you want a copy of a distribution, you •
can use the dictCopy method of DDist to copy the dictionary, and then use it to make a new
DDist.
Inside the tutor problem and the work file, the module dist has been imported; if you need to •
use functions or classes from there, you can access them with expressions like dist.x.

4

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist-module.html#bayesEvidence
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist-module.html#totalProbability
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist.DDist-class.html

Software Lab 12 6.01 Fall 2011

• The tutor will test the number of times you access the input probability distributions, and if
your code is too inefficient (it makes too many accesses to the dictionaries) it will fail the check
even if it generates the correct next belief.

When you check your code in the tutor, the results of the test cases show the number of calls to
the prob method of dist.DDist, followed by the actual result of state estimation. You don’t
have to have precisely the same number of calls as our solution, but it can’t be too many more.

The tutor will test your code on the copy machine example from the readings:

transitionTable =
{’good’: dist.DDist({’good’ : 0.7, ’bad’ : 0.3}),
’bad’ : dist.DDist({’good’ : 0.1, ’bad’ : 0.9})}

observationTable =
{’good’: dist.DDist({’perfect’ : 0.8, ’smudged’ : 0.1, ’black’ : 0.1}),
’bad’: dist.DDist({’perfect’ : 0.1, ’smudged’ : 0.7, ’black’ : 0.2})}

copyMachine =
ssm.StochasticSM(dist.DDist({’good’ : 0.9, ’bad’ : 0.1}),

lambda i: lambda s: transitionTable[s],

lambda s: observationTable[s])

obs = [(’perfect’, ’step’), (’smudged’, ’step’), (’perfect’, ’step’)]

You can use these values for testing, but don’t build any of them into your code. Your code should
work for any stochastic state machine (the model argument). This example is provided only so you
can understand the test cases. The variable obs is set to a sequence of observation, action pairs.
In this copy-machine example, the action is ignored, but it has to be present in order to make all
of the types match up correctly.

Step 2.

Wk.12.2.2 Do this tutor problem on how to implement the state estimator efficiently.

4 Preparing to localize
In Design Lab 13, we will build a system that will allow a robot to ’localize’ itself: that is, estimate
its position in the world, given a map of the obstacles in the world and the ability to make local
sonar readings. This next problem provides an overview of the components of the localization
system.

Step 3.

Wk.12.2.3 Think about the localization process.

5

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

