
MIT 6.02 DRAFT Lecture Notes
Last update: September 22, 2012

CHAPTER 7
Convolutional Codes: Construction

and Encoding

This chapter introduces a widely used class of codes, called convolutional codes, which
are used in a variety of systems including today’s popular wireless standards (such as
802.11) and in satellite communications. They are also used as a building block in more
powerful modern codes, such as turbo codes, which are used in wide-area cellular wireless
network standards such as 3G, LTE, and 4G. Convolutional codes are beautiful because
they are intuitive, one can understand them in many different ways, and there is a way
to decode them so as to recover the most likely message from among the set of all possible
transmitted messages. This chapter discusses the encoding of convolutional codes; the
next one discusses how to decode convolutional codes efficiently.

Like the block codes discussed in the previous chapter, convolutional codes involve
the computation of parity bits from message bits and their transmission, and they are also
linear codes. Unlike block codes in systematic form, however, the sender does not send the
message bits followed by (or interspersed with) the parity bits; in a convolutional code, the
sender sends only the parity bits. These codes were invented by Peter Elias ’44, an MIT EECS
faculty member, in the mid-1950s. For several years, it was not known just how powerful
these codes are and how best to decode them. The answers to these questions started
emerging in the 1960s, with the work of people like John Wozencraft (Sc.D. ’57 and former
MIT EECS professor), Robert Fano (’41, Sc.D. ’47, MIT EECS professor), Andrew Viterbi
’57, G. David Forney (SM ’65, Sc.D. ’67, and MIT EECS professor), Jim Omura SB ’63, and
many others.

⌅ 7.1 Convolutional Code Construction

The encoder uses a sliding window to calculate r > 1 parity bits by combining various sub
sets of bits in the window. The combining is a simple addition in F

2

, as in the previous
chapter (i.e., modulo 2 addition, or equivalently, an exclusive-or operation). Unlike a block
code, however, the windows overlap and slide by 1, as shown in Figure 7-1. The size of the
window, in bits, is called the code’s constraint length. The longer the constraint length,

81

82 CHAPTER 7. CONVOLUTIONAL CODES: CONSTRUCTION AND ENCODING

Figure 7-1: An example of a convolutional code with two parity bits per message bit and a constraint length

(shown in the rectangular window) of three. I.e., r = 2,K = 3.

the larger the number of parity bits that are influenced by any given message bit. Because
the parity bits are the only bits sent over the channel, a larger constraint length generally
implies a greater resilience to bit errors. The trade-off, though, is that it will take consider
ably longer to decode codes of long constraint length (we will see in the next chapter that
the complexity of decoding is exponential in the constraint length), so one cannot increase
the constraint length arbitrarily and expect fast decoding.

If a convolutional code produces r parity bits per window and slides the window for
ward by one bit at a time, its rate (when calculated over long messages) is 1/r. The greater
the value of r, the higher the resilience of bit errors, but the trade-off is that a propor
tionally higher amount of communication bandwidth is devoted to coding overhead. In
practice, we would like to pick r and the constraint length to be as small as possible while
providing a low enough resulting probability of a bit error.

In 6.02, we will use K (upper case) to refer to the constraint length, a somewhat un
fortunate choice because we have used k (lower case) in previous chapters to refer to the
number of message bits that get encoded to produce coded bits. Although “L” might be
a better way to refer to the constraint length, we’ll use K because many papers and doc
uments in the field use K (in fact, many papers use k in lower case, which is especially
confusing). Because we will rarely refer to a “block” of size k while talking about convo
lutional codes, we hope that this notation won’t cause confusion.

Armed with this notation, we can describe the encoding process succinctly. The encoder
looks at K bits at a time and produces r parity bits according to carefully chosen functions
that operate over various subsets of the K bits.1 One example is shown in Figure 7-1,
which shows a scheme with K = 3 and r = 2 (the rate of this code, 1/r = 1/2). The encoder
spits out r bits, which are sent sequentially, slides the window by 1 to the right, and then
repeats the process. That’s essentially it.

At the transmitter, the two princial remaining details that we must describe are:
1. What are good parity functions and how can we represent them conveniently?
2. How can we implement the encoder efficiently?
The rest of this chapter will discuss these issues, and also explain why these codes are

called “convolutional”.

1By convention, we will assume that each message has K - 1 “0” bits padded in front, so that the initial
conditions work out properly.

83 SECTION 7.2. PARITY EQUATIONS

⌅ 7.2 Parity Equations

The example in Figure 7-1 shows one example of a set of parity equations, which govern
the way in which parity bits are produced from the sequence of message bits, X . In this
example, the equations are as follows (all additions are in F

2

)):

p
0

[n] = x[n] + x[n- 1] + x[n- 2]

p
1

[n] = x[n] + x[n- 1] (7.1)

The rate of this code is 1/2.
An example of parity equations for a rate 1/3 code is

p
0

[n] = x[n] + x[n- 1] + x[n- 2]

p
1

[n] = x[n] + x[n- 1]

p
2

[n] = x[n] + x[n- 2] (7.2)

In general, one can view each parity equation as being produced by combining the mes
sage bits, X , and a generator polynomial, g. In the first example above, the generator poly
nomial coefficients are (1,1,1) and (1,1,0), while in the second, they are (1,1,1), (1,1,0),
and (1,0,1).

We denote by gi the K-element generator polynomial for parity bit pi. We can then
write pi[n] as follows:

k-1

pi[n] = (

X
gi[j]x[n- j]). (7.3)

j=0

The form of the above equation is a convolution of g and x (modulo 2)—hence the term
“convolutional code”. The number of generator polynomials is equal to the number of
generated parity bits, r, in each sliding window. The rate of the code is 1/r if the encoder
slides the window one bit at a time.

⌅ 7.2.1 An Example

Let’s consider the two generator polynomials of Equations 7.1 (Figure 7-1). Here, the gen
erator polynomials are

g
0 = 1,1,1

g
1 = 1,1,0 (7.4)

If the message sequence, X = [1,0,1,1, . . .] (as usual, x[n] = 0 8n < 0), then the parity

84 CHAPTER 7. CONVOLUTIONAL CODES: CONSTRUCTION AND ENCODING

bits from Equations 7.1 work out to be

p
0

[0] = (1 + 0+ 0) = 1

p
1

[0] = (1 + 0) = 1

p
0

[1] = (0 + 1+ 0) = 1

p
1

[1] = (0 + 1) = 1

p
0

[2] = (1 + 0+ 1) = 0

p
1

[2] = (1 + 0) = 1

p
0

[3] = (1 + 1+ 0) = 0

p
1

[3] = (1 + 1) = 0. (7.5)

Therefore, the bits transmitted over the channel are [1,1,1,1,0,0,0,0, . . .].
There are several generator polynomials, but understanding how to construct good

ones is outside the scope of 6.02. Some examples, found originally by J. Bussgang,2 are
shown in Table 7-1.

Constraint length g
0 g

1

3 110 111
4 1101 1110
5 11010 11101
6 110101 111011
7 110101 110101
8 110111 1110011
9 110111 111001101
10 110111001 1110011001

Table 7-1: Examples of generator polynomials for rate 1/2 convolutional codes with different constraint
lengths.

⌅ 7.3 Two Views of the Convolutional Encoder

We now describe two views of the convolutional encoder, which we will find useful in
better understanding convolutional codes and in implementing the encoding and decod
ing procedures. The first view is in terms of shift registers, where one can construct the
mechanism using shift registers that are connected together. This view is useful in devel
oping hardware encoders. The second is in terms of a state machine, which corresponds
to a view of the encoder as a set of states with well-defined transitions between them. The
state machine view will turn out to be extremely useful in figuring out how to decode a set
of parity bits to reconstruct the original message bits.

85 SECTION 7.3. TWO VIEWS OF THE CONVOLUTIONAL ENCODER

Figure 7-2: Block diagram view of convolutional coding with shift registers.

⌅ 7.3.1 Shift-Register View

Figure 7-2 shows the same encoder as Figure 7-1 and Equations (7.1) in the form of a block
diagram made up of shift registers. The x[n- i] values (here there are two) are referred to
as the state of the encoder. This block diagram takes message bits in one bit at a time, and
spits out parity bits (two per input bit, in this case).

Input message bits, x[n], arrive from the left. The block diagram calculates the parity
bits using the incoming bits and the state of the encoder (the k- 1 previous bits; two in this
example). After the r parity bits are produced, the state of the encoder shifts by 1, with x[n]
taking the place of x[n-1], x[n-1] taking the place of x[n-2], and so on, with x[n-K+ 1]
being discarded. This block diagram is directly amenable to a hardware implementation
using shift registers.

⌅ 7.3.2 State-Machine View

Another useful view of convolutional codes is as a state machine, which is shown in Fig
ure 7-3 for the same example that we have used throughout this chapter (Figure 7-1).

An important point to note: the state machine for a convolutional code is identical for
all codes with a given constraint length, K, and the number of states is always 2K-1. Only
the pi labels change depending on the number of generator polynomials and the values
of their coefficients. Each state is labeled with x[n- 1]x[n- 2] . . . x[n-K + 1]. Each arc is
labeled with x[n]/p

0

p
1 In this example, if the message is 101100, the transmitted bits

are 11 11 01 00 01 10.
This state-machine view is an elegant way to explain what the transmitter does, and also

what the receiver ought to do to decode the message, as we now explain. The transmitter
begins in the initial state (labeled “STARTING STATE” in Figure 7-3) and processes the
message one bit at a time. For each message bit, it makes the state transition from the
current state to the new one depending on the value of the input bit, and sends the parity
bits that are on the corresponding arc.

The receiver, of course, does not have direct knowledge of the transmitter’s state transi
2Julian Bussgang, “Some Properties of Binary Convolutional Code Generators,” IEEE Transactions on In

formation Theory, pp. 90–100, Jan. 1965. We will find in the next chapter that the (110, 111) code is actually
inferior to another rate-1/2 K = 3 code, (101, 111).

86 CHAPTER 7. CONVOLUTIONAL CODES: CONSTRUCTION AND ENCODING

Figure 7-3: State-machine view of convolutional coding.

tions. It only sees the received sequence of parity bits, with possible bit errors. Its task is to
determine the best possible sequence of transmitter states that could have produced the
parity bit sequence. This task is the essence of the decoding process, which we introduce
next, and study in more detail in the next chapter.

⌅ 7.4 The Decoding Problem

As mentioned above, the receiver should determine the “best possible” sequence of trans
mitter states. There are many ways of defining “best”, but one that is especially appealing
is the most likely sequence of states (i.e., message bits) that must have been traversed (sent)
by the transmitter. A decoder that is able to infer the most likely sequence the maximum-
likelihood (ML) decoder for the convolutional code.

In Section 6.2, we established that the ML decoder for “hard decoding”, in which the
distance between the received word and each valid codeword is the Hamming distance,
may be found by computing the valid codeword with smallest Hamming distance, and
returning the message that would have generated that codeword. The same idea holds
for convolutional codes. (Note that this property holds whether the code is either block or
convolutional, and whether it is linear or not.)

A simple numerical example may be useful. Suppose that bit errors are indepen
dent and identically distributed with an error probability of 0.001 (i.e., the channel is
a BSC with " = 0.001), and that the receiver digitizes a sequence of analog samples
into the bits 1101001. Is the sender more likely to have sent 1100111 or 1100001? The
first has a Hamming distance of 3, and the probability of receiving that sequence is
(0.999)4(0.001)3

= 9.9 ⇥ 10-10 . The second choice has a Hamming distance of 1 and a
probability of (0.999)6(0.001)1

= 9.9 ⇥ 10-4, which is six orders of magnitude higher and is
overwhelmingly more likely.

Thus, the most likely sequence of parity bits that was transmitted must be the one with

SECTION 7.4. THE DECODING PROBLEM 87

Msg Xmit* Rcvd d

0000 000000000000 7
0001 000000111110 8
0010 000011111000 8
0011 000011010110 4
0100 001111100000 6
0101 001111011110 5
0110 001101001000 7
0111
1000

001100100110
111110000000 111011000110

6
4

1001 111110111110 5
1010 111101111000 7
1011 111101000110 2
1100 110001100000 5
1101 110001011110 4
1110 110010011000 6
1111 110010100110 3

22 Most likely: 1011

Figure 7-4: When the probability of bit error is less than 1/2, maximum-likelihood decoding boils down

to finding the message whose parity bit sequence, when transmitted, has the smallest Hamming distance

to the received sequence. Ties may be broken arbitrarily. Unfortunately, for an N -bit transmit sequence,

there are 2N possibilities, which makes it hugely intractable to simply go through in sequence because

of the sheer number. For instance, when N = 256 bits (a really small packet), the number of possibilities

rivals the number of atoms in the universe!

the smallest Hamming distance from the sequence of parity bits received. Given a choice
of possible transmitted messages, the decoder should pick the one with the smallest such
Hamming distance. For example, see Figure 7-4, which shows a convolutional code with
K = 3 and rate 1/2. If the receiver gets 111011000110, then some errors have occurred,
because no valid transmitted sequence matches the received one. The last column in the
example shows d, the Hamming distance to all the possible transmitted sequences, with
the smallest one circled. To determine the most-likely 4-bit message that led to the parity
sequence received, the receiver could look for the message whose transmitted parity bits
have smallest Hamming distance from the received bits. (If there are ties for the smallest,
we can break them arbitrarily, because all these possibilities have the same resulting post-
coded BER.)

Determining the nearest valid codeword to a received word is easier said than done for
convolutional codes. For block codes, we found that comparing against each valid code-
word would take time exponential in k, the number of valid codewords for an (n,k) block

88 CHAPTER 7. CONVOLUTIONAL CODES: CONSTRUCTION AND ENCODING

Figure 7-5: The trellis is a convenient way of viewing the decoding task and understanding the time evo
lution of the state machine.

code. We then showed how syndrome decoding takes advantage of the linearity property
to devise an efficient polynomial-time decoder for block codes, whose time complexity
was roughly O(nt

), where t is the number of errors that the linear block code can correct.
For convolutional codes, syndrome decoding in the form we described is impossible

because n is infinite (or at least as long as the number of parity streams times the length of
the entire message times, which could be arbitrarily long)! The straightforward approach
of simply going through the list of possible transmit sequences and comparing Hamming
distances is horribly intractable. We need a better plan for the receiver to navigate this
unbelievable large space of possibilities and quickly determine the valid message with
smallest Hamming distance. We will study a powerful and widely applicable method for
solving this problem, called Viterbi decoding, in the next chapter. This decoding method
uses a special structure called the trellis, which we describe next.

⌅ 7.5 The Trellis

The trellis is a structure derived from the state machine that will allow us to develop an
efficient way to decode convolutional codes. The state machine view shows what happens
at each instant when the sender has a message bit to process, but doesn’t show how the
system evolves in time. The trellis is a structure that makes the time evolution explicit.
An example is shown in Figure 7-5. Each column of the trellis has the set of states; each
state in a column is connected to two states in the next column—the same two states in
the state diagram. The top link from each state in a column of the trellis shows what gets
transmitted on a “0”, while the bottom shows what gets transmitted on a “1”. The picture
shows the links between states that are traversed in the trellis given the message 101100.

89 SECTION 7.5. THE TRELLIS

We can now think about what the decoder needs to do in terms of this trellis. It gets a
sequence of parity bits, and needs to determine the best path through the trellis—that is,
the sequence of states in the trellis that can explain the observed, and possibly corrupted,
sequence of received parity bits.

The Viterbi decoder finds a maximum-likelihood path through the trellis. We will
study it in the next chapter.

Problems and exercises on convolutional coding are at the end of the next chapter, after we
discuss the decoding process.

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

