
Top Down Approach To Neural Nets

MAJOR HINT for Neural Nets portion of Lab 5

Figure 1: A two layer Neural Network

To understand what to implement for dOutDx(self, weight) for lab 5, you'll need to
thoroughly understand how the error update equation for back-propagation is fully derived.
Recall from lecture that the error update equation for back propagation is:

.

Here, is a derivative defined for all weights w in the network. This guide will show that

this derivative can be constructed from and i.e. the dOutDx for Neuron and Inputs

elements in the network.
Let's take a look at the derivatives in terms of the three types of elements.
1. Performance Node: This is the top most derivative we consider. The chain rule

expansion of gives us:

 =

We already know the mathematical expression for the first term. But what about the second

1

Top Down Approach To Neural Nets

term? Isn't that just dOutDx(w) called on neuron C?

2. Input Node: This one is easy! . Since weights are not related to inputs.

3. Neuron Nodes:
In reference to the two-layer net (Figure 1), consider the following two cases:

 and

Case 1: involves a weight that is connected directly into Neuron C.

Expanding by chain rule:

 =

= Expanding out zC

=

What is oA? That's just calling output() on neuron A! You can access Neuron A by calling

the API get_inputs() from neuron C!

Case 2: involves a weight that is further downstream from Neuron C:

By faithfully expanding the derivative via the chain rule, we get:

 =

 =

 =

 = derivative of the input unit

is 0

Q: So what are the programmatic equivalents of and ?

A: They are just the value of calling dOutDx(w1A) on neuron A and neuron B respectively!

Working these two derivatives out by hand illustrates the two key cases that your code needs
to handle.

So think of structuring your dOutDx code for Neurons in terms of these two cases:
1. When w is a weight that is directly connected to the current neuron (check using

2

Top Down Approach To Neural Nets

has_weight(weight))
2. When w is a weight that is not directly connected.

Each case will involve some code that combines output() and dOutDx() call on various
relevant elements.

Note: You may also further break case-2 down into two subcases:
a) weights that are descendants of (or downstream from) the current node
b) weights that are not downstream from the current node (in which case their ultimate
derivative value should be 0.)

If you chose to sub-case case 2, then you may consider using isa_descendant_weight(elem,
weight) to help you. weight is a direct input weight into the current neuron, and elem is
the weight that you are checking.

3

https://docs.google.com/Doc?tab=edit&dr=true&id=dhqhm2bq_183ndrncvvr
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTgzbmRybmN2dnI
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTgzbmRybmN2dnI
https://docs.google.com/
https://docs.google.com/

MIT OpenCourseWare
http://ocw.mit.edu

6.034 Artificial Intelligence
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

