
SVM and Boosting

                Note that    and  for non-support vectors. 

For when using a linear kernel. 
The summation only contains support vectors.  
Support vectors are training data points with 

 

 For when using a decomposable kernel (see 
definition below).  

Support Vector Machines
 
In SVMs we are trying to find a decision boundary that maximizes the "margin" or the "width of 
the road" separating the positives from the negative training data points.

To find this we minimize:     subject to the constraints  

The resulting Lagrange multiplier equation we try to optimize is: 

                                    

Solving the above Lagrangian optimization problem will give us w, b, and alphas, parameters 
that determines a unique maximal margin (road) solution.   On the maximum margin "road", 
the +ve, and -ve points that stride the "gutter" lines are called support vectors.   The decision 
boundary lies at the middle of the road.   The definition of the "road" is dependent only on the 
support vectors, so changing (adding deleting) non-support vector points will not change the 
solution.   Note, that widest "road" is a 2D concept.  If the problem is in 3D we want the widest 
region bounded by two planes; in even higher dimensions, a subspace bounded by two 
hyperplanes. 
 
Solving for the Lagrange multiplier s in general requires numerical optimization methods that 
are beyond the scope of this class.   In practice, you use Quadratic Programming solvers.  A 
popular algorithm for solving SVMs is Platt's SMO (Sequential Minimal Optimization) algorithm.    
For SVM problems on quizzes, we generally just ask you to solve for the values of w, b and 
alphas using algebra and/or geometry. 
 
Useful Equations for solving SVM questions 
 
A. Equations derived from optimizing the Lagrangian:

1. Partial of the Lagrangian wrt to b:  From  

Sum of all alphas (support vector weights) with their signs should add to 0.  

2. Partial of the Lagrangian wrt to w:  From  

Sum of alphas, ys of support vectors wrt to vector w.   
 
B. Equations from the boundaries and constraints: 
3. The Decision boundary: 
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          where,        

 
 

            

General form, for any k
To classify an unknown 
kernel function 

ernel. 
, we compute the 
 against each of the 

support vectors .  Support vectors are 

training data points with  

 

  

          For when using a linear kernel 
 

4. Positive gutter:  

  General form, for any kernel. 

 

  

 
For use when the Kernel is linear. 

5. Negative gutter: 

               

6. The width of the margin (or road): 

 

 
In document classification, feature vectors are composed of binary word 
features: 

Linear Kernel I(word=foo) outputs 1 if the word "foo" appears in the  document 0 if it 
does not. 
 
Each document is represented as |vocabulary| length feature vectors.   
Support vectors found are generally particularly salient documents 
(documents best at discriminating topics being classified). 

Alternate formula for the two support vector case: 

      

This equation is useful when solving SVM problems in 1D or 2D, where the width of the road can 
be visually determined. 
 
Common SVM Kernels: 
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Decomposable 
Kernels 
 
Idea: Define  
that transforms input 
vectors into a 
different (usually 
higher) dimensional 
space where the data 
is (more easily) 
linearly separable. 

 

 
Example: 

  

Polynomial Kernel 
 

   n > 1 

 
Example: Quadratic Kernel:        

●     In 2D resulting decision boundary can look parabolic, linear or 
hyperbolic depending on which terms in the expansion dominate.

●     Here is an expansion of the quadratic kernel, with u = [x, y]
 

 

 

 

 
HW: Try this Kernel using Professor Winston's demo 

Radial Basis Function 
(RBF) or Gaussian 
Kernel 
 

●     Will fit almost 
any data.  May 
exhibit 
overfitting 
when used 
improperly.

●     Similar to KNN 
but with all 
points having a 
vote; weight of 
each vote 
determined by 

 

In 2D generated decision boundaries resemble contour circles around 
clusters of +ve and -ve points.   Support vectors are generally +ve or -
ve points that are closest to the opposing cluster.  The contour space 
drawn results from sum of support vector Gaussians. 
 
HW: Try this Kernel using Professor Winston's demo 
 
When   is large you get flatter Gaussians.  When  is small you get 
sharper Gaussians.  (Hence when using a small  contour density will 
appear closer / denser around support vector points).    

Gaussian
�❍     Points 

farther 
away get 
less of a 
vote 
than 
points 

 
Here is the Kernel in-2D expanded out, with u = [x, y] 

    

As a point gets closer to a support vector it approaches exp(0) = 1.  As 
a point moves far away from a support vector it approaches exp(-
infinity) = 0. 
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nearby 
 

Sigmoidal (tanh) 
Kernel 

●     Allows for 
combination of 
linear decision 
boundaries 

 

 

 

 
Properties of tanh: 

●     Similar to the sigmoid function    

●     Ranges from -1 to +1.  
●     tahn(x) => +1 when x >> 0
●     tahn(x) => -1  when x << 0

 
Resulting decision boundaries are logical combinations of linear 
boundaries.   Not too different from second layer neurons in Neural 
Nets. 
 
Like RBF, may exhibit overfitting when improperly used. 

Linear combination of 
Kernels 

Scaling:  
Idea: Kernel               
functions are closed 
under addition and 
scaling (by a positive 
number). 

   for a > 0 
or Linear combination: 
      a,b>0 

 
Method 1 of Solving SVM parameters by inspection:   
This is a step-by-step solution to Problem 2.A from 2006 quiz 4: 
We are given the following graph with  and  points on the x-y axis;   
+ve point at x1 (0, 0) and a -ve point x2 at (4, 4). 

 
Can a SVM separate this?   i.e. is it linearly separable?  Heck Yeah!  using the line above. 
Part 2A: Provide a decision boundary: 
We can find the decision boundary by graphical inspection. 

1.  The decision boundary lies on the line:   y = -x + 4
2.  We have a +ve support vector  at (0, 0) with line equation y = -x
3.  We have a -ve support vector at (4, 4) with line equation y = - x + 8
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Given the equation for the decision boundary, we next massage the algebra to get the decision 
boundary to conform with the desired form, namely: 

      

1.      (< because +ve is below the line) 
2.  

3.     (multiplied by -1) 
4.     (writing out the coefficients explicitly) 

Now we can read the solution from the equation coefficients:  

w1 = -1    w2 = -1    b = 4 

Next, using our formula for width of road, we check that these weights gives a road width of:  

.    

WAIT!   This is clearly not the width of the "widest" road/margin.    
We remember that any multiple c (c>0) of the boundary equation is still the same decision 
boundary.  So all equations of the form: 

     
Strides this decision boundary.   So here is a more general solution: 

 w1 = -c   w2 = -c   b = 4c 

or    and  

Using The Width of the Road Constraint 
Graphically we see that the widest width margin should be:       

The solution weight vector  and intercept  can be solved by solving for c constrained by the 
known width-of-the-road.   Length of  in terms of c:    

     

Now plugin all this into the margin width equation and solving for c, we get: 

        =>       =>       =>    

This means the true weight vector and intercept for the SVM solution should be: 

  and  

Next we solve for alphas,  using the w vector and equation 1. 
   

Plugin in the vector values of support vectors and w: 

 

We get two identical equations: 
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    or       

 
Using Equation 1, now we can solve for the other alpha: 

 

 

Part 2B: Does the boundary change if a +ve point x3 is added at (-1, -1)? 

No.  Support vectors are still at 1, and 2.  Decision boundary stays the same. 
Part 2C: What if point x2 (-ve) is moved to coordinate (k, k)? 

How will  values change, increase, decrease or stay same?  When k = 2? and k = 8? 
Answer:  Go back to how we solved for alphas: 

     

Plugin in x2 

Solving for 
    or  

Using the fact that  ,    

and width-of-road/margin .   

We express alpha in terms of the margin m:     

 

Answer: 
●     When k changes from 4 to 2.   The margin (road width) m is halved and k is also halved.   

So alpha must increase by a factor of 4.
●     When k changes from 4 to 8.   The margin m is doubled, k is also doubled.   So alpha must 

decrease by a factor of 4.
Though we do not provide a full proof here.   Alpha in generally changes inversely with m. 
Widen road -> lower alpha.  Narrowed road -> higher alpha 
 
Method 2: Solving for alpha, b, and w without visual inspection (By 
computing Kernels and solving Constraint equations) 
Example from 2005 Final Exam. 
In this problem you are told that you have the following points. 
 
 -ve points:   A  at (0, 0)   B  at (1, 1) 
+ve points:   C  at (2, 0) 
 
and that these points lie on the gutter in the SVM max-margin solution. 
 
Step 1.   Compute all kernels function values, which in this case, these are all dot products. 

K(A, A) = 0*0+0*0 = 0 K(A, B) = 0*1+0*1 = 0 K(A, C) = 0*2+0*0 = 0 

K(B, A) = 1*0+1*0 = 0 K(B, B) = 1*1+1*1 = 2 K(B, C) = 1*2+1*0 = 2 

K(C, A) = 2*0+0*0 = 2 K(C, B) = 2*1+0*1 = 2 K(C, C) = 2*2+0*0 = 4 
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Step 2:   Write out the system of equations, using SVM constraints: 
Constraint 1: ,   

Constraint 2:  positive gutter. 

Constraint 3:   negative gutter. 

This will yield 4 equations. 

C1 -1  -1  1  0  0 

yAK(A,
C3.A A)=-

1*0=0  

yBK(B,
 A)=-

1*0=0 

ycK(C,
 A)=

+1*2=2 
+ 1  -1 

yAK(A,
C3.B B)=-

1*0=0  

yBK(B,
 B)=-

1*2=-2 

ycK(C,
 B)=

+1*2=2 
+ 1  -1 

yAK(A,
C2.C C)=-

1*0=0  

yBK(B,

C)=-
1*2=-2 

ycK(C,
 C)=

+1*4=4 
+ 1  +1 

For clarity here are the four equations:

C1  

C3.A  

C3.B  

C2.C  

Step 3:  Use your favorite method of solving linear equations to solve for the 4 unknowns. 
Answer: 

    

 
This is a more general way to solve SVM parameters, without the help of geometry.  This method 
can be applied to problems where "margin" width or boundary equation can not be derived by 
inspection.  (e.g. > 2D) 
 
NOTE:  We used the gutter constraints as equalities above because we are told that the given 
points lie on the "gutter".    More realistically, if we were given more points, and not all points lay 
on the gutters, then we would be solving a system of inequalities (because the gutter equations 
are really constraints on >= 1 or <= -1).     
 
In the quadratic programming solvers used to solve SVMs, we are in fact doing just that, we are 
minimizing a target function by subjecting it to a system of linear inequality constraints. 
 
Example of SVMs with a Non-Linear Kernel 
From Part 2E of 2006 Q4.  You are given the graph below and the following kernel: 

 

and you are asked to solve for equation for the decision boundary. 
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Step 1: First, decompose the kernel into a dot product of  functions:  
 
Answer:   

 
Step 2: Convert all our original points into the new space using the transform.  (We are going 
from 2D to 1D). 
Positive points are at: 

     

     

     

     

Negative points are at: 

     

     

Step 3:  Plot the points in the new space, this appears as a line from 0 to 8. 
With positive points at 0, 2, 4 and negative points at 6, 8. 
 
The support vectors lie between  and  (between values of 4 and 6) 

Hence the decision boundary (maximum margin) should be:     
The < due to the positive points being all less than 5. 
 
Expanding the determined decision boundary in terms of components of x, we get: 

 

Square both sides: 
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Convert to  (standard form): 
 

 
 

This is a circle with radius  
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An Abstract Lesson on Support Vector Behavior 

 
Suppose you have the above set of points.  Let's solve the SVM parameters by inspection. 
1. Boundary equation: 

   =>     =>   

2. Read off the  and b  and multiply by c (c>0): 

    

3. Now apply the width of the road/margin constraint: 

 

   plugging in in length of w, and solving for c: 

   =>   

4. Now we have the SVM optimal solutions to w and b: 

       

5. Next, solve for the   using the two lagrangian equations: 
 and  

a) From expanding the first equation, we get: 

 

which leads to two equations: 

  or      and      or  

b) From expanding the second equation , we get: 

   or    

c) Putting the equations from a) and b) together we can solve for the other two alphas. 

   or       and similarly for     

We see that the two +ve support vector alphas are split based on the ratio of distances 

determined by s and t.   If t = s were equal, then  =  =  

Observation A:  
Q: Suppose we moved point A to the origin at (0, 0).  What happens to  and ?  
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A: This configuration basically implies s = 0; so we get:    and . 

Conceptually,   now becomes the sole primary support vector because point A sits 
directly across from point B.   Point A takes up all the share of the "pressure" in holding up 
the margin; point C, though still on the gutter, effectively becomes a non-support vector.  So 
this implies that points on the gutter may not always serve the role of being a support vector. 
 
Observation B: 
Q: Suppose we changed k, by moving point B up/or down the y-axis what happens to the 
alphas? 

A: All the alphas are proportional to    

If k decreases, the road narrows, the alphas increases.   Analogy, the supports need to 
apply more "pressure" to push the margin tighter. 
 
If k increases, the road widens, the alphas decrease.  Analogy: wider road needs less 
"pressure" on the supports to hold it in place. 
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Boosting 
The main idea in Boosting is that we are trying to combine (or ensemble) of "weak" classifiers 
(classifiers that underfit the data) h(x) into a single strong classifier H(x).  

  

  

where: 
    

Each data point is weighed.     for .   Weights are like probabilities, (0, 1], with 

.    But weights are never 0; this implies that all data points will have some vote at all 

times. 
 
Decision stump weights:  

  

Definition of Errors: 
             

In Boosting we always pick stumps with errors < 1/2.  Because stumps with errors > 1/2 can 
always be flipped.  Stumps with error = 1/2 are useless because they are no better than flipping 
a fair coin. 

    and       so      =>       Therefore:   .    

Adaboost Algorithm 
Input: Training data  

1.  Initialize        a weight for each data point. 

2.  For s = 1 ... T:
a.  Train base learner using distribution  on training data.   Get a base (stump) 

classifier  that achieves the lowest  (error).    [Note in examples that we 

do in class,  are picked from a set of predefined stumps, this procedure of 
"picking" the best stump is the same as "training".]

b.  Compute the stump weight:   

c.  Update weights (there are three ways to do this): 

■     Original:   (correct pts.)     (incorrect 

pts.)

■     OR  more human-friendly:     (correct pts.)  

   (incorrect pts.)   (see derivation below) 

■     OR  use numerator-denominator method (see below)   
1.  Output the final classifier:    
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Possible Termination conditions: 
1. Stop after T rounds  (we manually set some T.) 
2. Stop after H(x) (final classifier) has error = 0 on training data or < some error threshold. 
3. Stop when you can't find any more stumps h(x) where weighted error is < 0.5.  (i.e. All 
stumps have E = 0.5). 
 
The Numerator-Denominator method  
A calculator-free method for finding weight updates quickly 
 
Replace the Weight Update Step 1c above with these steps. 

1. Write all weights in the form of    

where the denominator d is the same to all weights. 
 
2. Circle the data points that are incorrectly classified. 
 
3. Compute the new denominator for (the circled) incorrectly classified points: 
          

       

 
which is sum of all the incorrect numerators times two. 
Compute the new denominator for (uncircled) correct points: 
 
      

sum of all the correct numerators times two. 
 
4. New weights are the old numerator divided by the updated denominators found in step 3. 
 

      if incorrect 

        if correct. 

 
5. Adjust all the numerators and denominators such that the denominator is again the same for 
all weights.   Optional: Check and make sure correct weights add up to 1/2, and incorrect 
weights also add up to 1/2. 
   
A Shortcut on computing the output of H(x).    
Quizzes often ask you for the Error of the final H(x) ensemble classifier on the training data. 
Here is a quick way to compute the output of H(x) without calculating logarithms. 
Step 1: compute the sign of each of stump h(x) on the given data point. 
Step 2: compute products of the log arguments of the +ve stumps and -ve stump. 

    If          If   

Example: suppose   

if  is + and  is + and  is -ve 
    (5 * 2) > 2    H(x) should output +ve 
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if  is + and  is - and  is -ve 
    5 > (2 * 2)     H(x) should output +ve. 
Step 3:  Once you've computed all of the H(x) output values on the training data points, count 
the number of case where H(x) disagrees with the true output.   That is the error. 
  
FAQ 
Dear TA, how do I determine if a stump will "never" be used (such as for part 1.A of 2006 Q4)? 
 
Test stumps that are never used are ones that make more errors than some pre-existing test 
stump.     In other words, if the set of mistakes stump X makes is a superset of errors stump Y 
makes, then Error(X) > Error(Y) is always true, no matter what weight distributions we use.  
Hence we will always chose Y over X because it makes less errors.   So X will never be used! 
 
Here is the answer to problem 1A from the 2006 Q4 with explanation.   Setup:  We are given the 
tests and the mistakes they make on the training examples, and we are asked to cross out the 
tests that are never used. 

Test Misclassified examples Never used? Reason? 

TRUE 1,2,3,5 Yes, superset of G=Y or U!=N 

FALSE 4,6 Yes, superset of U=M 

C=Y 1,6 No, 

C=N 2,3,4,5 Yes, superset of G=Y or U=M 

U=Y 1,2,3,6 Yes, superset of U!=N 

U!=Y 4,5 Yes, superset of G=Y or U=M 

U=N 4,5,6 Yes, superset of G=Y or U=M 

U!=N 1,2,3 No, 

U=M 4 No, 

Yes, superset of G=Y, C=Y U!=M 1,2,3,5,6 or U!=N 

G=Y 5 No, 

Yes, superset of U=M, C=Y G=N 1,2,3,4,6 or U!=N 
 
Food For thought: 
Suppose we were to come up with a strong classifier that is a uniform combination of stumps 
(equal weights).   
Q: How many mis-classifications would the following classifier commit? 
 
    H(x) = h(FALSE) + h(C=Y) + h(U!=Y) 
 
A: Combining the misclassification sets of the stumps:  {4, 6}, {1, 6}, {4, 5} 
Points 1, 5 will be misclassified by 1 stump and correctly classified by 2 stumps. 
So H(x) will be correct on 1, 5. 
Points 4, 6 will be misclassified by 2 stumps and correctly classified by 1 stump. 
So H(x) will misclassify 4, 6. 
Therefore the points H(x) will mis-classify will be {4, 6} 
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How many misclassifications would     H(x) = h(U=M) + h(G=Y) + h(C=Y) make? 
(Optional 1) Derivation of the human-friendly weight update 
equations 
Here is how the original weight update equations for Adaboost was derived into the more human 
friendly version.    The original Adaboost weight update equations were 

          For correctly classified samples (we reduce their weight)  

          For incorrectly classified samples  (we increase their weight) 

Plug in alphas and redefine the exponential terms in terms of errors E: 

           For correctly classified examples.  

 

           For incorrectly classified examples. 

Next, plug in the normalization factor (derived in Prof. Winston's handout) 

       

Then simplifying gives us the: 

         for correctly classified examples.    

 

              for incorrectly classified samples. 

To check your answers.  Always sum up weights (for correct or wrong weights), they must each 
add up to 1/2! 

         

     

 
(Optional 2) Proof of correctness of numerator-denominator 
method 
In this proof we use the short hand:  

                     

In the procedure, we keep the numerator constant, only the denominator is updated during the 
weight update step from d to d'.    Starting from the weight update equations (for correct points):

1.   2.   

https://docs.google.com/View?id=dhqhm2bq_111czn7fsfx (15 of 16) [6/25/2011 4:43:19 PM]
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3.   4.   

5.    

The proof for incorrect points will yield the same result.   This shows that the denominator 
update rule used in step 3 can be derived directly from the weight update equations so it is 
correct. 
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