ive
Fall 2005

Lecture 15: Putting it all
together

From parsing to code generation

How to make the computer understand?
*Write a program using a programming language

* Microprocessors talk in assembly language

Program
written
ina
Programming

Saman Amarasinghe 2 6.035 ©MIT Fall 1998

Example (input program)

int expr(int n)

{
int d;
d=4*n*n*(M+1) *(n+1);
return d;
b
Saman Amarasinghe 3 6.035 ©MIT Fall 1998

Example (Output assembly code)

Unoptimized Code Optimized Code

expr:
.LFB2:

pushq %rbp sedi, %eax
_LCF10: * %heax
Lcrpa, VA trsp. wrbp i seax
movl Yedi, -4(%rbp) iy eax
movl -4(%rbp), %eax .
movl %eax, %edx
imull -4(%rbp), tedx
movl -4C%rbp), %eax
incl tieax
inull tieax, %edx
movl -4(%rbp), %eax
incl tieax
inull Siedx, %eax
sall $2, %eax
movl %eax, -8(%rbp)
movl -8(%rbp), %eax
leave
ret
Saman Amarasinghe 4 6.035 ©MIT Fall 1998

Anatomy of a Computer

Program (character stream)
xical Analyzer (Scanner

Token Stream
[Syntax Analyzer (Parser) |
Parse Tree
[Semantic Analyzer |
Intermediate Representation
[CodeOptimizer |
Optimized Intermediate Representation
erator

Assembly code

Saman Amarasinghe 5 6.035 ©MIT Fall 1998

Lexical Analysis

* Lexical analyzer create tokens out of a text
stream

» Tokens are defined using regular expressions

Saman Amarasinghe 6 6.035 ©MIT Fall 1998

Examples of Regular Expressions

Regular Expression
a
a'b
alb
€
a*
(ale)-b
num = 0[1]2|3|4/5/6|7|8|9
posint = num - num*
int=(g|-) - posint

real =int- (g] (. - posint))

7

Strings matched

€9

a
“ab”
g2 p
s
@9 g tega eaaan
“ab” “b”
“r] e w3
“g» “6035”
“_42” «1024”

“-12.56” “12” “1.414”...

6.035 OMIT Fall 1998

Lexical Analysis

* Lexical analyzer create tokens out of a text
stream

» Tokens are defined using regular expressions

* Regular expressions can be mapped to
Nondeterministic Finite Automatons (NFA)
— by simple construction

» NFA is transformed to a DFA
— Transformation algorithm
— Executing a DFA is straightforward

singhe 8 6.035 ©MIT Fall 1998

Syntax Analysis (parsing)

* Defining a language using context-free

grammars

6.035 OMIT Fall 1998

Example: A CFG for expressions

<expr> — <expr> <op> <expr>
<expr> — (<expr>)

<expr> — - <expr>

<expr> — num

<op> — +

<op> — *

6.035 OMIT Fall 1998

Parse Tree Example

num “*’ ‘(‘ num ‘+’ num ‘)’

AT

<expr> <op>

T

<

e

)

<eXpr> <op> <eXpr>

num

+ num

6.035 OMIT Fall 1998

Syntax Analysis (parsing)

* Defining a language using context-free
grammars

* Classification of Grammars

6.035 OMIT Fall 1998

LR(k) Parser Engine

uoNoY J19sied

13 6.035 OMIT Fall 1998

31

ACTION Goto
State
Q. (s2 (
<S> 5 <X>$ 1 <Y> 5 (+<Y>)
X> * <Y> 3
<Y> o (<Y>) \<Y> S(e<y>) | Y nd
<Y> . <Y> 5o (<Y>) Y
<Y> e s3
X Y <Y> 5 (<Y>.))
S5 s6 s4
(<> 5 (<5)"]
Saman Al singhe 14 6.035 O©MIT Fall 1998

Semantic Analysis

* Building a symbol table
« Static Checking
— Flow-of-control checks
— Uniqueness checks
— Type checking
* Dynamic Checking
— Array bounds check
— Null pointer dereference check

Saman Amarasinghe 15 6.035 ©MIT Fall 1998

Translation to Intermediate Format

* Goal: Remain Largely Machine Independent
But Move Closer to Standard Machine Model

— From high-level IR to a low-level IR
+ Eliminate Structured Flow of Control

» Convert to a Flat Address Space

Saman Amarasinghe 16 6.035 ©MIT Fall 1998

Code Optimizations

* Generate code as good as hand-crafted by a
good assembly programmer

« Have stable, robust performance

 Abstract the architecture away from the
programmer
— Exploit architectural strengths
— Hide architectural weaknesses

Saman Amarasinghe 17 6.035 ©MIT Fall 1998

Code Optimizations

+ Algebraic simplification

* Common subexpression elimination
» Copy propagation

 Constant propagation

» Dead-code elimination

* Register allocation

* Instruction Scheduling

18 6.035 OMIT Fall 1998

Compiler Project!
* You guys build a full-blown compiler from the

ground up!!!
* From decaf to working code

19 6.035 OMIT Fall 1998

Compiler Derby

Who has the fastest compiler in the east???

» Will give you the program 12 hours in advance
— Test and make all the optimizations work
— DO NOT ADD PROGRAM SPECIFIC HACKS!

» Wednesday, December 14" at 11:00AM
location TBA

— refreshments provided

singhe 20 6.035 ©MIT Fall 1998

How will you use 6.035 knowledge?

* As an informed programmer

* As a designer of simple languages to aid other
programming tasks

* As an engineer dealing with new computer
architectures

e As a true compiler hacker

Saman Amarasinghe 21 6.035 ©MIT Fall 1998

1. Informed Programmer

» Now you know what the compiler is doing
— don’t treat it as a black box
— don’t trust it to do the right thing!

* Implications
— performance
— debugging

— correctness

Saman Amarasinghe 22 6.035 ©MIT Fall 1998

1. Informed Programmer

* What did you learned in 6.035?

— How optimizations work
or why they did not work

— How to read and understand optimized code

23 6.035 OMIT Fall 1998

25

2. Language Extensions

+ In many applications and systems, you may
need to:
— implement a simple language
* handle input
* define an interface
» command and control
— extend a language
* add new functionality
+ modify semantics

* help with optimizations

singhe 24 6.035 ©MIT Fall 1998

2. Language Extensions

* What you learned in 6.035

— define tokens and languages using regular
expressions and CFGs

— use tools such as jlex, lex, javacup, yacc
— build intermediate representations
— perform simple transformations on the IR

25 6.035 OMIT Fall 1998

29

3. Computer Architectures

* Many special purpose processors
— in your cell phone, car engine, watch, etc. etc.

* Designing new architectures

* Adapting compiler back-ends for new
architectures

26 6.035 OMIT Fall 1998

3. Designing New Architectures

* Great advances in VLSI technology
— very fast and small transistors
— scaling up to billion transistors
— but, slow and limited wires and 1/0

* A computer architecture is a combination of
hardware and compiler
— need to know what a compiler can do and what
hardware need to do
— If compiler can do it don’t waste hardware

resources.
Saman Amarasinghe 27 6.035 ©MIT Fall 1998

3. Designing New Architectures

* What did you learned in 6.035

— Capabilities of a compiler: what is simple and what
is hard to do

— How to think like a compiler writer

Saman Amarasinghe 28 6.035 ©MIT Fall 1998

3. Back-end support

» Every new architecture need a new backend

* Instruction scheduling

— Even if the ISA is the same, different resource
constrains

— How to handle new features

29 6.035 OMIT Fall 1998

3. Back-end support

* What do you learned in 6.035
— Intermediate representations
— Transforming/optimizing the IR
— Process of generating assembly from a high-level IR
— Assembly interface issues (eg: calling conventions)
— Register allocation issues
— Code scheduling issues

30 6.035 OMIT Fall 1998

36

4. Compiler Hacking

* Theory
* Algorithms

* Implementation

Saman Amarasinghe 31 6.035 ©MIT Fall 1998

36

4. Compiler Hacking

* Theory:
— Develop general, abstract concepts
— Prove correctness, optimality etc.

» Examples
— parse theory
— lattices and data-flow
— abstract interpretation
— The language ML

Saman Amarasinghe 32 6.035 ©MIT Fall 1998

4. Compiler Hacking

* Algorithms:

— Design a solution to a given problem
(Mostly new optimizations)

— Use many techniques such as graph theory, number
theory, etc.

— May have to limit the scope and find good
heuristics

* Examples
— partial redundancy elimination
— register allocation by graph coloring
— using multi-granular (MMX) operations

Saman Amarasinghe 33 6.035 ©MIT Fall 1998

4. Compiler Hacking

* Implementation:
— Develop a new compiler
— Issues of designing a very complex software
— Putting theory and algorithms into practice

» Examples
— A JIT for Java
— A query optimization engine for SQL
— A rasterizer for postscript

Saman Amarasinghe 34 6.035 ©MIT Fall 1998

4. Compiler Hacking

* What did you learned in 6.035?

Saman Amarasinghe 35 6.035 ©MIT Fall 1998

Where to Look for Current Research?

* PLDI - Programming Languages Design and Implementation
Conference

» Code Generation / Machine specific
— Micro Conference

— ASPLOS — Architecture Support for Programming Languages and
Operating Systems

— CGO - Code Generation and Optimization
« Language Theory
— POPL - Principles of Programming Languages
— OOPSLA - Object Oriented Programming Systems Languages and
Applications
* Program Analysis
— SAS - Static Analysis Symposium
— PPoPP — Principles and Practice of Parallel Programming

Saman Amarasinghe 36 6.035 ©MIT Fall 1998

