
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.035, Spring 2010 Handout — Code Generation Project Monday, Mar 1

Checkpoint and Design Document DUE: Wednesday, Mar 10

DUE: Monday, Tuesday, Mar 16

Code Generation involves producing correct x86-64 assembler code for all Decaf programs. The
two following projects will involve code optimizations. For now, we are not interested in whether
your generated code is efficient.

By the end of code generation, you should have a fully working Decaf compiler. You’ll be able to
write, compile, and execute real programs on a real machine!

Project Assignment

For Code Generation, your compiler will translate your high-level IR into a low-level IR. Your
low-level IR will include structures that more closely match the machine instructions of a modern
architecture. Your compiler will then translate your low-level IR into x86-64 assembly code to be
run on an AMD Opteron machine. You should target the subset of the x86-64 ISA defined in the
x86-64 Architecture Guide, which is an appendix to this document. For a given input file containing
a Decaf program, your compiler must generate an assembly language listing (〈filename〉.s).

Your generated code must include all runtime checks listed in language specification. Additional
checks such as integer overflow are not required.

The two final assignments, Dataflow Analysis and Optimization, will focus on improving the effi
ciency of the target code generated by your compiler. For this assignment, you are not expected
to produce great code. (Even horrendous code is acceptable. When considering tradeoffs, always
choose simplicity of implementation over performance.)

You are not constrained as to how you go about generating your final assembly code listing. How
ever, we suggest that you follow the general approach presented in lecture.

You will have a number of opportunities to do some creative design work for the code optimization
projects. For this assignment, you should focus your creative energies on designing your low-level
IR, familiarizing yourself with our target ISA, your machine-code representations of the run-time
structures, and generating correct assembly code. Do not try to produce an improved register
allocation scheme; you will be addressing these issues later.

System Usage

We have setup two machines for this course for you to use. These are:

• tyner.csail.mit.edu

1

• silver.csail.mit.edu

These machines are setup to be part of the CAG (Compilers and Architecture) group at CSAIL.
The accounts and passwords are different from your regular Athena accounts. Each group will use
a single account in the form le0X. Your passwords have been put in your Athena lockers in files
le0X-pass. Please change your passwords immediately. You are free to use these machines for
your 6.035 related needs. You may, however, find it more convenient to do most of the development
on a laptop or desktop, and use these servers for testing. This would be particularly true if you use
an IDE like Eclipse for your development.

Compiling and Libraries

Your compiler will create a .s file, which can be compiled to create an executable file. You can use
gcc4 (gcc 4.1.1) or cc (which is soft-linked to gcc 3.4.6) to compile your assembly code.

Decaf does not have any input/output functions. Part of the assignment is to implement the
standard x86-64 calling convention for callout statements, so that you can interface with the
outside world. Any function that is called using callout needs to be linked in separately. gcc
will link against any standard libraries (you may need to use the -l argument for gcc to link some
libraries). The testing files provided to you link against the standard C library. If you want to use
functions that are not easy to use in Decaf (handle pointers, etc), you are welcome to write your
own library calls in C, compile them to object files (using gcc -c) and then link them in by hand
when compiling your assembly.

What to Hand In

Follow the directions given in project overview handout when writing up your project. Your design
documentation should include a description of how your IR and code generation are organized, as
well as a discussion of your design for generating code.

Each group must place their completed submission at:

/mit/6.035/group/GROUP/submit/GROUP-codegen.tar.gz

Submitted tarballs should have the following structure:

GROUPNAME-codegen.tar.gz

|

‘-- GROUPNAME-codegen

|

|-- AUTHORS (list of students in your group, one per line)

|

|-- code

| |
| ... (full source code, can build by running ‘ant‘)
|
|-- doc
| |
| ... (write-up, described in project overview handout)
|
‘- dist

|
‘- Compiler.jar (compiled output, for automated testing)

2

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

You should be able to run your compiler from the command line with:

java -jar dist/Compiler.jar -target codegen <filename>

Your compiler should then write a x86-64 assembly listing to: <filename>.s

Nothing should be written to standard out or standard error for a syntactically and semantically
correct program unless the -debug flag is present. If the -debug flag is present, your compiler
should still run and produce the same resulting assembly listing. Any debugging output is left to
your own discretion.

Grading Script

As with the previous project, we are providing you with the grading script we will use to test your
code (except for the write-up). This script only shows you results for the public test cases.

The script can be found on athena in the course locker:

/mit/6.035/provided/gradingscripts/p3grader.py

The script takes your tarball as the only arg:

/mit/6.035/provided/gradingscripts/p3grader.py GROUPNAME-codegen.tar.gz

Or it works on the extracted directory:

/mit/6.035/provided/gradingscripts/p3grader.py GROUPNAME-codegen/

Please test your submission against this script. It may help you debug your code and it will help
make the grading process go more smoothly.

Checkpoint and Design Document

For this stage of the project, you are required to provide a checkpoint of your implementation and
to submit a design document one week prior to the due date of the project. Follow the submission
instructions above for the checkpoint. The TA will grab the checkpoint files from your group
directory at 11:59 on the checkpoint due date. Your compiler does not have to produce correct
code at the time of the checkpoint. The checkpoint exists to encourage you to start working early
on the project. If you get your project working at the end, the checkpoint will have little effect.
However, if your group is unable to complete the project, the checkpoint submission will play a
critical role in your grade. If we determine that your group did not do a substantial amount of
work before the checkpoint, you will be severely penalized.

The design document should describe your design and implementation plans for the code generation
stage. This description will include the design of your low-level IR and a discussion of your code
generation scheme and implementation. This document will be reviewed by the TA and feedback
will be provided. This document also counts towards the project grade.

3

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Test Cases

We will run your compilers on the test cases in:

/mit/6.035/provided/codegen/

and on a set of hidden tests.

Related Handouts

The X86-64 Architecture Guide, provided as a supplement to this handout, presents a not-so-gentle
introduction to the x86-64 ISA. It presents a subset of the x86-64 architecture that should be
sufficient for the purposes of this project. You should read this handout before you start to write
the code that traverses your IR and generates x86-64 instructions.

4

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

