
6.035

Project 3: Unoptimized

Code Generation

Jason Ansel

MIT - CSAIL

Quiz Monday

●	 50 minute quiz Monday
●	 Covers everything up to yesterdays lecture

●	 Lexical Analysis (REs, DFAs, NFAs)
●	 Syntax Analysis (CFGs, top-down parsing, buttom-

up parsing)
●	 Semantics Analysis (type checking, type systems,

attribute grammars)
●	 Questions similar to miniquizs, but a bit

harder

Project 3 Roadmap

● Design and Checkpoint

–	 Due Monday March 10th

–	 Checkpoint
●	 Document of your proposed design (email me)
●	 Create a tarball of what you have
●	 If you get codegen to work, no effect
●	 If you have problems at end, we will be very harsh if you haven’t

done much work by the checkpoint

● Group meeting
–	 not mandatory, meet with me if you want.

● Final Implementation and Report
–	 Due on March 16th

Course Machines

● Meet tyner.csail.mit.edu and silver.csail.mit.edu!
● Two AMD64 machines

– dual processor
– dual core per processor
– 8 gigs of RAM

● Use them for running your compiled assembly code.
– User: le0X, password in le0X-pass in group dir

● Can access files over ssh:

– git clone athena.dialup.mit.edu:/mit/6.035/group/...

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Unoptimized Code Generation

●	 Translate all the instructions in the
intermediate representation to assembly
language
–	 Allocate space for the variables.

●	 Globals
●	 Arrays

–	 Adhere to calling conventions
–	 Short circuiting
–	 Runtime checks

Low-level IR design choices

● Classes to use

– Same has high IR? (with restrictions)

– Newly added classes?

– Mix?

● Level of the low IR
– How close to assembly?

● Alternate representations?
– Single Static Assignment

– Infinite register machine (DirectX, etc)

– Stack-based machine (Java bytecode, etc)

Math ops

●● High Level: ● Temporaries: In place:

a=1*2+3*4 t1 = 1 * 2 t1 = 2 (movq)

b=a*a+1 t2 = 3 * 4
t1*= 1 (imul)

t2 = 4 (movq)

a = t1 + t2 t2*= 3 (imul)

t3 = a * a a = t2 (mov)

b = t3 + 1 a+= t1 (add)

t3 = a (mov)

t3*= a (imul)

b = 1 (movq)

b+=t3 (add)

Variables / Temporaries
● Names (input) become...

● Descriptors (high IR)

● Intermediate allocation

– Everything on the stack?
● Later optimize by moving to registers

– Everything in a register?
● “Spill” excess to the stack

– Other techniques...
● Final allocation (fixed registers + stack)

● Register allocation is hard!

– Start simple

Control flow

●	 Must eventually become labels and jumps

if (a) { foo } else { bar }
●	 Becomes:

cmp $0, a

jne l1

bar

jmp l2

l1:

foo

l2:

x86-64 (AMD64)

●	 Stack values are 64-bit (8-byte)
●	 Values in decaf are 32-bit or 1-bit
●	 For this phase, we are not optimizing for space
●	 Use 64-bits (quadword) for ints and bools.
●	 Use instructions that operate on 64-bit values for

stack and mem operations, e.g. mov
●	 Arithmetic instructions have 32-bit operands, add,

sub, etc

Registers

Register Purpose Saved across calls

%rax temp register; return value No

%rbx callee-saved Yes

%rcx used to pass 4th argument to functions No

%rdx used to pass 3rd argument to function No

%rsp stack pointer Yes

%rbp callee-saved; base pointer Yes

%rsi used to pass 2nd argument to function No

%rdi used to pass 1st argument to functions No

%r8 used to pass 5th argument to functions No

%r9 used to pass 6th argument to functions No

%r10-r11 temporary No

%r12-r15 callee-saved registers Yes

ASM Instructions

●	 Check out the x86-64 Architecture guide.
●	 Remember that we are using AT&T assembler

syntax (gcc)
●	 Usually, operator op1 op2

– op2 = op1 operator op2
●	 $x denotes immediate integer (base 10) value x
●	 %r?? is a register
●	 You can use names of globals directly

ASM Instructions

●	 Some caveats:
–	 mov instructions sometimes need a suffix if the

assembler cannot resolve the data size
–	 For example when you move an immediate into

memory: movq $1, -8(%rbp)

Registers

●	 Instructions allow only limited memory

operations
–	 add -4(%rbp), -8(%rbp)
–	 mov -4(%rbp), %r10

add %r10, -8(%rbp)

●	 Important for performance
–	 limited in number

●	 Special registers
–	 %rbp base pointer
–	 %rsp stack pointer

Memory

Registers ALU

Control

Allocating Read-Only Data

●	 All Read-Only data in the text

segment

●	 Integers
–	 use immediates

●	 Strings
– use the .string macro

.section .rodata

.msg:

.string "Five: %d\n"

.section .text

.globl main

main:

enter $0, $0

mov $.msg, %rdi

mov $5, %rsi

mov $0, %rax

call printf

leave

ret

Global Variables

●	 Allocation: Use the

assembler's .comm directive

●	 Use name or

●	 Use PC relative addressing
–	 %rip is the current instruction

address
–	 X(%rip) will add the offset from

the current instruction location
to the space for x in the data
segment to %rip

–	 Creates easily re-locatable
binaries

…
.section .text
.globl main

main:
enter $0, $0
mov
mov
mov
call
leave

$.msg, %rdi
x, %rsi
$0, %rax
printf

ret

.comm x, 8, 8

.comm name, size, alignment
The .comm directive allocates storage in the
data section. The storage is referenced by the
identifier name. Size is measured in bytes and
must be a positive integer. Name cannot be
predefined. Alignment is optional. If alignment is
specified, the address of name is aligned to a
multiple of alignment

Global Variables

●	 Allocation: Use the

assembler's .comm directive

●	 Use name or

●	 Use PC relative addressing
–	 %rip is the current instruction

address
–	 X(%rip) will add the offset from

the current instruction location
to the space for x in the data
segment to %rip

–	 Creates easily re-locatable
binaries

…
.section .text
.globl main

main:
enter $0, $0
mov
mov
mov
call
leave

$.msg, %rdi
x(%rip), %rsi
$0, %rax
printf

ret

.comm x, 8, 8

.comm name, size, alignment
The .comm directive allocates storage in the
data section. The storage is referenced by the
identifier name. Size is measured in bytes and
must be a positive integer. Name cannot be
predefined. Alignment is optional. If alignment is
specified, the address of name is aligned to a
multiple of alignment

Addressing Modes

●	 (%reg) is the memory location pointed to by
the value in %reg

●	 movq $5, -8(%rbp)

What about Arrays

●	 What code would you write for?

ex: a[4] = 5;

…

mov $5, %r10

mov $4, %r11

???

…

.comm a, 8 * 10, 8

Array Addressing

●	 The data segment grows toward larger
addresses.

●	 How to access an array element?
●	 We want something like

–	 base + offset * type_size
●	 AT&T Asm Syntax:

–	 offset(base, index, scale)

= offset + base + (index * scale)

What about Arrays

●	 What code would you write for?

ex: a[4] = 5;

…

mov $5, %r10

mov $4, %r11

???

…

.comm a, 8 * 10, 8

What about Arrays

●	 What code would you write for?

ex: a[4] = 5;

…
mov $5, %r10
mov $4, %r11
mov %r10, a(, %r11, 8)
…
.comm a, 8 * 10, 8

Procedure Abstraction

● Stack frames (activation records)
● Calling convention

Registers

●	 What to do with live registers across a
procedure call?
–	 Callee Saved (belong to the caller)

●	 %rsp, %rbp, %r12-15

–	 The caller must assume that all other registers
will be used by the callee

Your Generated Code

●	 Your code for this stage should be
inefficient!

●	 Stack locations for all temporary values and
variables

●	 For an expression, load operand value(s)
into register(s) then perform operation and
write to location in stack

●	 Use regs %r10 and %r11 for temporaries
–	 Why?

Example
if (x == 20) { x = 0; } else
{ x = 5; }

-32(%rbp), %r10

$1, %r11

%r10, %r11

.true_block

$5, %r10

%r10, -24(%rbp)

mov -24(%rbp), %r10

mov $20, %r11

cmp %r10, %r11

mov $0, %r11

mov $1, %r10

cmove %r10, %r11

mov %r11, -32(%rbp)

mov

movq

cmp

je

mov

mov

jmp .done

.true_block:

mov $5, %r10

mov %r10, -24(%rbp)

.done:

Reusing Temporaries

● You can allocate a temporary for each expression
● You can reuse temporaries very simply
●	 Ex:

eval E1 into T1

eval E2 into T2

T3 = T1 + T2
● After T3 is assigned, do we need T1 and T2?

Reusing Temporaries

● Simple stack algorithm:
–	 Keep a count for temporaries c (init to 0)

●	 create a temporary location named Tc
●	 each Tc is a different location on the stack
●	 Tc is reused!

–	 While traversing IR
●	 Whenever a temporary name is used as an operand,

decrement c by 1
●	 Whenever a temporary name is generated use Tc

and increase c by 1

Reusing Temporaries Example

x = 1 * 2 + 3 * 4 – 5 * 6

Statement Value of T after
statement (0 at start)

T0 = 1 * 2 1

T1 = 3 * 4 2

T0 = T0 + T1 1

T1 = 5 * 6 2

T0 = T0 - T1 1

X = T0 0

Another Intermediate

Representation

●	 You could translate your AST directly into
ASM code

●	 But for the next stages you will be
optimizing your code
–	 These optimizations are defined to operate at a

low level
●	 EX, register allocation after locations have been

assigned to all temps and vars

Design a Low IR

●	 Don’t worry about machine portability
–	 flat low-level IRs.

● 2 address code looks nice+

● operand1 operation= operand2

–	 Close to ASM language (linear list)
–	 binops, labels, jumps, calls, names, locations

●	 Make it flexible
– operands can be names or machines locations
–	 first generate lowIR with names, then a later

pass resolves names to locations

Possible Compiler Flow

●	 I recommend the template approach
– break/continue and short-circuiting are not hard

●	 Use the template approach to translate AST to
low IR

●	 Then have multiple passes to “lower” it to
machine level
–	 resolve names to locations on stack
–	 activation frame sizes for stack size calculations

–	 pass arguments to methods for a call

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Untitled

