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Introduction to Probability 

Probability is the last topic in this course and perhaps the most important. Many algo­
rithms rely on randomization. Investigating their correctness and performance requires 
probability theory. Moreover, many aspects of computer systems, such as memory man­
agement, branch prediction, packet routing, and load balancing are designed around 
probabilistic assumptions and analyses. Probability also comes up in information theory, 
cryptography, artificial intelligence, and game theory. Beyond these engineering applica­
tions, an understanding of probability gives insight into many everyday issues, such as 
polling, DNA testing, risk assessment, investing, and gambling. 

So probability is good stuff. 

1 Monty Hall 

In the September 9, 1990 issue of Parade magazine, the columnist Marilyn vos Savant 
responded to this letter: 

Suppose you’re on a game show, and you’re given the choice of three doors. Behind 
one door is a car, behind the others, goats. You pick a door, say number 1, and the host, 
who knows what’s behind the doors, opens another door, say number 3, which has a 
goat. He says to you, ”Do you want to pick door number 2?” Is it to your advantage 
to switch your choice of doors? 

Craig. F. Whitaker 
Columbia, MD 

The letter roughly describes a situation faced by contestants on the 1970’s game show 
Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied that the con­
testant should indeed switch. But she soon received a torrent of letters— many from 
mathematicians— telling her that she was wrong. The problem generated thousands of 
hours of heated debate. 

Yet this is is an elementary problem with an elementary solution. Why was there so much 
dispute? Apparently, most people believe they have an intuitive grasp of probability. (This 
is in stark contrast to other branches of mathematics; few people believe they have an 
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intuitive ability to compute integrals or factor large integers!) Unfortunately, approxi­
mately 100% of those people are wrong. In fact, everyone who has studied probability at 
length can name a half­dozen problems in which their intuition led them astray— often 
embarassingly so. 

The way to avoid errors is to distrust informal arguments and rely instead on a rigorous, 
systematic approach. In short: intuition bad, formalism good. If you insist on relying on 
intuition, then there are lots of compelling financial deals we’d love to offer you! 

1.1 The Four­Step Method 

Every probability problem involves some sort of randomized experiment, process, or 
game. And each such problem involves two distinct challenges: 

1. How do we model the situation mathematically? 

2. How do we solve the resulting mathematical problem? 

In this section, we introduce a four­step approach to questions of the form, “What is the 
probability that —– ?” In this approach, we build a probabilistic model step­by­step, 
formalizing the original question in terms of that model. Remarkably, the structured 
thinking that this approach imposes reduces many famously­confusing problems to near 
triviality. For example, as you’ll see, the four­step method cuts through the confusion sur­
rounding the Monty Hall problem like a Ginsu knife. However, more complex probability 
questions may spin off challenging counting, summing, and approximation problems— 
which, fortunately, you’ve already spent weeks learning how to solve! 

1.2 Clarifying the Problem 

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some as­
sumptions in order to have any hope of modeling the game formally: 

1. The car is equally likely to be hidden behind each of the three doors. 

2. The player is equally likely to pick each of the three doors, regardless of the car’s 
location. 

3. After the player picks a door, the host must open a different door with a goat behind 
it and offer the player the choice of staying with the original door or switching. 

4. If the host has a choice of which door to open, then he is equally likely to select each 
of them. 

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. Other 
interpretations are at least as defensible, and some actually lead to different answers. But 
let’s accept these assumptions for now and address the question, “What is the probability 
that a player who switches wins the car?” 
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1.3 Step 1: Find the Sample Space 

Our first objective is to identify all the possible outcomes of the experiment. A typical 
experiment involves several randomly­determined quantities. For example, the Monty 
Hall game involves three such quantities: 

1. The door concealing the car. 

2. The door initially chosen by the player. 

3. The door that the host opens to reveal a goat. 

Every possible combination of these randomly­determined quantities is called an out­
come. The set of all possible outcomes is called the sample space for the experiment. 

A tree diagram is a graphical tool that can help us work through the four­step approach 
when the number of outcomes is not too large or the problem is nicely structured. In 
particular, we can use a tree diagram to help understand the sample space of an experi­
ment. The first randomly­determined quantity in our experiment is the door concealing 
the prize. We represent this as a tree with three branches: 

car
location

C

A

B

In this diagram, the doors are called A, B, and C instead of 1, 2, and 3 because we’ll be 
adding a lot of other numbers to the picture later. Now, for each possible location of the 
prize, the player could initially choose any of the three doors. We represent this by adding 
a second layer to the tree. 
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car
location

player’s
initial 
guess

C

C

A

B

A

B

C

A

B

C

A

B

Finally, the host opens a door to reveal a goat. The host has either one choice or two, 
depending on the position of the car and the door initially selected by the player. For 
example, if the prize is behind door A and the player picks door B, then the host must 
open door C. However, if the prize is behind door A and the player picks door A, then 
the host could open either door B or door C. All of these possibilities are worked out in a 
third layer of the tree: 
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car
location

player’s
initial 
guess

door
revealed

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

B

A

B

outcome

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Now let’s relate this picture to the terms we introduced earlier: the leaves of the tree 
represent outcomes of the experiment, and the set of all leaves represents the sample space. 
Thus, for this experiment, the sample space consists of 12 outcomes. For reference, we’ve 
labeled each outcome with a triple of doors indicating: 

(door concealing prize, door initially chosen, door opened to reveal a goat) 

In these terms, the sample space is the set: 

(A, A,B), (A, A,C), (A, B, C), (A, C,B), (B, A, C), (B, B, A), 
=S 

(B, B, C), (B, C, A), (C, A,B), (C, B, A), (C, C,A), (C, C,B) 

The tree diagram has a broader interpretation as well: we can regard the whole exper­
iment as “walk” from the root down to a leaf, where the branch taken at each stage is 
randomly determined. Keep this interpretation in mind; we’ll use it again later. 

1.4 Step 2: Define Events of Interest 

Our objective is to answer questions of the form “What is the probability that —– ?”, 
where the horizontal line stands for some phrase such as “the player wins by switching”, 
“the player initially picked the door concealing the prize”, or “the prize is behind door 
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C”. Almost any such phrase can be modeled mathematically as an event, which is defined 
to be a subset of the sample space. 

For example, the event that the prize is behind door C is the set of outcomes: 

{(C, A,B), (C, B, A), (C, C,A), (C, C,B)} 

The event that the player initially picked the door concealing the prize is the set of out­
comes: 

{(A, A,B), (A, A,C), (B, B, A), (B, B, C), (C, C,A), (C, C,B)} 

And what we’re really after, the event that the player wins by switching, is the set of 
outcomes: 

{(A, B, C), (A, C,B), (B, A, C), (B, C, A), (C, A,B), (C, B, A)} 

Let’s annotate our tree diagram to indicate the outcomes in this event. 

car
location

player’s
initial 
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

B

A

B

outcome

X

X

X

X

X

X

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Notice that exactly half of the outcomes are marked, meaning that the player wins by 
switching in half of all outcomes. You might be tempted to conclude that a player who 
switches wins with probability 1/2. This is wrong. The reason is that these outcomes are 
not all equally likely, as we’ll see shortly. 
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1.5 Step 3: Determine Outcome Probabilities 

So far we’ve enumerated all the possible outcomes of the experiment. Now we must start 
assessing the likelihood of those outcomes. In particular, the goal of this step is to assign 
each outcome a probability, which is a real number between 0 and 1. The sum of all 
outcome probabilities must be 1, reflecting the fact that exactly one outcome must occur. 

Ultimately, outcome probabilities are determined by the phenomenon we’re modeling 
and thus are not quantities that we can derive mathematically. However, mathematics 
can help us compute the probability of every outcome based on fewer and more elementary 
modeling decisions. In particular, we’ll break the task of determining outcome probabilities 
into two stages. 

1.5.1 Step 3a: Assign Edge Probabilities 

First, we record a probability on each edge of the tree diagram. These edge­probabilities 
are determined by the assumptions we made at the outset: that the prize is equally likely 
to be behind each door, that the player is equally likely to pick each door, and that the 
host is equally likely to reveal each goat, if he has a choice. Notice that when the host has 
no choice regarding which door to open, the single branch is assigned probability 1. 

car
location

player’s
initial 
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)
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1.5.2 Step 3b: Compute Outcome Probabilities 

Our next job is to convert edge probabilities into outcome probabilities. This is a purely 
mechanical process: the probability of an outcome is equal to the product of the edge­probabilities 
on the path from the root to that outcome. For example, the probability of the topmost out­
come, (A, A, B) is 

1 1 1 1 
= . 

3 
· 
3 
· 
2 18 

We’ll justify this process formally later on. In the meantime, here is a nice informal justi­
fication to tide you over. Remember that the whole experiment can be regarded as a walk 
from the root of the tree diagram down to a leaf, where the branch taken at each step is 
randomly determined. In particular, the probabilities on the edges indicate how likely 
the walk is to proceed along each path. For example, a walk starting at the root in our 
example is equally likely to go down each of the three top­level branches. 

Now, how likely is such a walk to arrive at the topmost outcome, (A, A, B)? Well, there is 
a 1­in­3 chance that a walk would follow the A­branch at the top level, a 1­in­3 chance it 
would continue along the A­branch at the second level, and 1­in­2 chance it would follow 
the B­branch at the third level. Thus, it seems that about 1 walk in 18 should arrive at the 
(A, A, B) leaf, which is precisely the probability we assign it. 

Anyway, let’s record all the outcome probabilities in our tree diagram. 

car
location

player’s
initial 
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

probability

1/18

1/18

1/9

1/9

1/9

1/18

1/18

1/9

1/9

1/9

1/18

1/18

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)
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Specifying the probability of each outcome amounts to defining a function that maps 
each outcome to a probability. This function is usually called Pr. In these terms, we’ve 
just determined that: 

1
Pr {(A, A,B)} = 

18 
1

Pr {(A, A,C)} = 
18 
1

Pr {(A, B, C)} = 
9 

etc. 

Earlier, we noted that the sum of all outcome probabilties must be 1 since exactly one 
outcome must occur. We can now express this symbolically: 

Pr {x} = 1 
x∈S 

In this equation, S denotes the sample space. 

Though Pr is an ordinary function, just like your old friends f and g from calculus, we will 
subject it to all sorts of horrible notational abuses that f and g were mercifully spared. Just 
for starters, all of the following are common notations for the probability of an outcome 
x: 

Pr {x} Pr(x) Pr[x] Pr x p(x) 

A sample space S and a probability function Pr : S → [0, 1] together form a probability 
space. Thus, a probability space describes all possible outcomes of an experiment and the 
probability of each outcome. A probability space is a complete mathematical model of an 
experiment. 

1.6 Step 4: Compute Event Probabilities 

We now have a probability for each outcome, but we want to determine the probability of 
an event. We can bridge this gap with a definition: 

The probability of an event is the sum of the probabilities of the outcomes it 
contains. 

As a notational matter, the probability of an event E ⊆ S is written Pr {E}. Thus, our 
definition of the probability of an event can be written: 

Pr {E} ::= Pr {x} . 
x∈E 
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For example, the probability of the event that the player wins by switching is: 

Pr {switching wins} = Pr {A, B, C} + Pr {A, C,B} + Pr {B, A, C} + 

Pr {B, C, A} + Pr {C, A,B} + Pr {C, B, A}
1 1 1 1 1 1 

= + + + + + 
9 9 9 9 9 9 
2 

= 
3 

It seems Marilyn’s answer is correct; a player who switches doors wins the car with prob­
ability 2/3! In contrast, a player who stays with his or her original door wins with proba­
bility 1/3, since staying wins if and only if switching loses. 

We’re done with the problem! We didn’t need any appeals to intuition or ingenious analo­
gies. In fact, no mathematics more difficult than adding and multiplying fractions was 
required. The only hard part was resisting the temptation to leap to an “intuitively obvi­
ous” answer. 

1.7 An Alternative Interpretation of the Monty Hall Problem 

Was Marilyn really right? Our analysis suggests she was. But a more accurate conclusion 
is that her answer is correct provided we accept her interpretation of the question. There is an 
equally plausible interpretation in which Marilyn’s answer is wrong. Notice that Craig 
Whitaker’s original letter does not say that the host is required to reveal a goat and offer 
the player the option to switch, merely that he did these things. In fact, on the Let’s Make 
a Deal show, Monty Hall sometimes simply opened the door that the contestant picked 
initially. Therefore, if he wanted to, Monty could give the option of switching only to 
contestants who picked the correct door initially. In this case, switching never works! 

1.8 Probability Identities 

The definitions we’ve introduced lead to some useful identities involving probabilities. 
Many probability problems can be solved quickly with such identities, once you’re used 
to them. If E is an event, then the complement of E consists of all outcomes not in E and 
is denoted E. The probabilities of complementary events sum to 1: 

Pr {E} + Pr E = 1. 

About half of the time, the easiest way to compute the probability of an event is to com­
pute the probability of its complement and then apply this formula. 

Suppose that events E1, . . . , En that are disjoint; that is, every outcome is in at most one 
event Ei. The sum rule says that the probability of the union of these events is equal to 
the sum of their probabilities: 

Pr {E1} + + Pr {En} .Pr {E1 ∪ · · · ∪ En} = · · · 
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The probability of the union of events that are not necessarily disjoint is given by an 
inclusion­exclusion formula analogous to the one for set sizes: 

Pr {E1 ∪ · · · ∪ En} =
 Pr {Ei} − Pr {Ei ∩ Ej}+ Pr {Ei ∩ Ej ∩ Ek} − · · · . 
i i,j i,j,k 

The following inequality, called the union bound, also holds even if events E1, . . . , En are 
not disjoint: 

+ Pr {En} .Pr {E1 ∪ · · · ∪ En} ≤ Pr {E1}+ · · ·

The union bound is simple and “good enough” for many probability calculations. For 
example, suppose that Ei is the event that the i­th critical component in a spacecraft fails. 

n is the event that some critical component fails. The union bound gives Then E1 ∪ · · · ∪ E
an upper bound on this vital probability and does not require engineers to estimate all 
the terms in the gigantic inclusion­exclusion formula. 

2 Infinite Sample Spaces 

Suppose two players take turns flipping a fair coin. Whoever flips heads first is declared 
the winner. What is the probability that the first player wins? A tree diagram for this 
problem is shown below: 

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

etc.

H
H

H
HT

T
T

T

first
player

second
player

first
player

second
player

1/2
1/4

1/8
1/16

The event that the first player wins contains an infinite number of outcomes, but we can 
still sum their probabilities: 

Pr {first player wins}
 + 
1 

128 
+ 

1 

32 
+ 

1 

8 
+ 

1 

2
2 

=

= 

· · · 

. 

The second step uses the formula for the sum of a geometric series. Similarly, we can


3 
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compute the probability that the second player wins: 

+ 
1 

256 
+ 

1 

64 
+ 

1 

16 
+ 

1 

4
1 

=

= 

Pr {second player wins}
 · · · 

. 
3


In principle, the game could go on forever if both players kept flipping tails. In our tree 
diagram, this situation does not correspond to any leaf —rather, it corresponds to the 
infinite path. So, this is not an outcome. If we wanted to consider it as such, we could 
add an extra leaf as a child of the root. The probability on the edge to this leaf should then 
be the probability of the infinite path 

n
1111 

lim
 =
0.
=
· ·
 · · · 
2
 2
 2
 2
n→∞ 

Since this probability is 0, there would be no impact on our calculations. 

The mathematical machinery we’ve developed is adequate to model and analyze many 
interesting probability problems with infinite sample spaces. However, some intricate 
infinite processes require more powerful (and more complex) measure­theoretic notions 
of probability. For example, if we generate an infinite sequence of random bits b1, b2, b3, . . ., 
then what is the probability that 

b1 b2 b3 
+
+
+


21 22 23 
· · · 

is a rational number? We won’t take up such problems in this course. 

3 Conditional Probability 

Suppose that we pick a random person in the world. Everyone has an equal chance of 
being selected. Let A be the event that the person is an MIT student, and let B be the event 
that the person lives in Cambridge. What are the probabilities of these events? Intuitively, 
we’re picking a random point in the big ellipse shown below and asking how likely that 
point is to fall into region A or B: 

A
B

set of all people
in the world

set of people who
live in Cambridge

set of MIT
students
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The vast majority of people in the world neither live in Cambridge nor are MIT students, 
so events A and B both have low probability. But what is the probability that a person is 
an MIT student, given that the person lives in Cambridge? This should be much greater— 
but what it is exactly? 

What we’re asking for is called a conditional probability; that is, the probability that 
one event happens, given that some other event definitely happens. Questions about 
conditional probabilities come up all the time: 

•	 What is the probability that it will rain this afternoon, given that it is cloudy this 
morning? 

•	 What is the probability that two rolled dice sum to 10, given that both are odd? 

•	 What is the probability that I’ll get four­of­a­kind in Texas No Limit Hold ’Em Poker, 
given that I’m initially dealt two queens? 

There is a special notation for conditional probabilities. In general, Pr {A B} denotes the |
probability of event A, given that event B happens. So, in our example, Pr {A B} is the |
probability that a random person is an MIT student, given that he or she is a Cambridge 
resident. 

How do we compute Pr {A B}? Since we are given that the person lives in Cambridge, |
we can forget about everyone in the world who does not. Thus, all outcomes outside 
event B are irrelevant. So, intuitively, Pr {A B} should be the fraction of Cambridge |
residents that are also MIT students; that is, the answer should be the probability that the 
person is in set A ∩ B (darkly shaded) divided by the probability that the person is in set 
B (lightly shaded). This motivates the definition of conditional probability: 

Pr {A B} ::= 
Pr {A ∩ B}| 

Pr {B} 

If Pr {B} = 0, then the conditional probability Pr {A B} is undefined. | 
Probability is generally counterintuitive, but conditional probability is the worst! Con­
ditioning can subtly alter probabilities and produce unexpected results in randomized 
algorithms and computer systems as well as in betting games. Yet, the mathematical 
definition of conditional probability given above is very simple and should give you no 
trouble— provided you rely on formal reasoning and not intuition. 

3.1 The Halting Problem 

The Halting Problem is the canonical undecidable problem in computation theory that was 
first introduced by Alan Turing in his seminal 1936 paper. The problem is to determine 
whether a Turing machine halts on a given blah, blah, blah. Anyway, much more impor­
tantly, it is the name of the MIT EECS department’s famed C­league hockey team. 
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In a best­of­three tournament, the Halting Problem wins the first game with probability 
1/2. In subsequent games, their probability of winning is determined by the outcome of 
the previous game. If the Halting Problem won the previous game, then they are invigo­
rated by victory and win the current game with probability 2/3. If they lost the previous 
game, then they are demoralized by defeat and win the current game with probablity 
only 1/3. What is the probability that the Halting Problem wins the tournament, given 
that they win the first game? 

This is a question about a conditional probability. Let A be the event that the Halting 
Problem wins the tournament, and let B be the event that they win the first game. Our 
goal is then to determine the conditional probability Pr {A B}.|
We can tackle conditional probability questions just like ordinary probability problems: 
using a tree diagram and the four­step method. A complete tree diagram is shown below, 
followed by an explanation of its construction and use. 

2/3

L
1/2

W
1/2

W 1/3

L
2/3

L 1/3

W
2/3

L
L 1/3

W
2/3

W
1/3

1st game
outcome 2nd game

outcome
3rd game
outcome probability

outcome

1/3

1/18

1/9

1/9

1/18

1/3

event B:
win the

1st game?

event A:
win the
series?

WW

WLW

WLL

LWW

LWL

LL

outcome

Step 1: Find the Sample Space 

Each internal vertex in the tree diagram has two children, one corresponding to a win 
for the Halting Problem (labeled W ) and one corresponding to a loss (labeled L). The 
complete sample space is: 

= {WW, WLW, WLL, LWW, LWL, LL}S 

Step 2: Define Events of Interest 

The event that the Halting Problem wins the whole tournament is: 

T = {WW, WLW, LWW} 
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And the event that the Halting Problem wins the first game is: 

F = {WW,WLW, WLL} 

The outcomes in these events are indicated with checkmarks in the tree diagram. 

Step 3: Determine Outcome Probabilities 

Next, we must assign a probability to each outcome. We begin by labeling edges as spec­
ified in the problem statement. Specifically, The Halting Problem has a 1/2 chance of 
winning the first game, so the two edges leaving the root are each assigned probability 
1/2. Other edges are labeled 1/3 or 2/3 based on the outcome of the preceding game. 
We then find the probability of each outcome by multiplying all probabilities along the 
corresponding root­to­leaf path. For example, the probability of outcome WLL is: 

1 1 2 1 
= 

2
· 
3
· 
3 9 

Step 4: Compute Event Probabilities 

We can now compute the probability that The Halting Problem wins the tournament, 
given that they win the first game: 

Pr {A B} = 
Pr {A ∩ B}| 

Pr {B}
Pr {{WW,WLW}}

= 
Pr {{WW,WLW, WLL}}

1/3 + 1/18 
= 

1/3 + 1/18 + 1/9 
7 

= 
9 

We’re done! If the Halting Problem wins the first game, then they win the whole tourna­
ment with probability 7/9. 

3.2 Why Tree Diagrams Work 

We’ve now settled into a routine of solving probability problems using tree diagrams. 
But we’ve left a big question unaddressed: what is the mathematical justification behind 
those funny little pictures? Why do they work? 

The answer involves conditional probabilities. In fact, the probabilities that we’ve been 
recording on the edges of tree diagrams are conditional probabilities. For example, con­
sider the uppermost path in the tree diagram for the Halting Problem, which corresponds 
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to the outcome WW . The first edge is labeled 1/2, which is the probability that the Halt­
ing Problem wins the first game. The second edge is labeled 2/3, which is the probability 
that the Halting Problem wins the second game, given that they won the first— that’s a 
conditional probability! More generally, on each edge of a tree diagram, we record the 
probability that the experiment proceeds along that path, given that it reaches the parent 
vertex. 

So we’ve been using conditional probabilities all along. But why can we multiply edge 
probabilities to get outcome probabilities? For example, we concluded that: 

1 2
Pr {WW} = 

2
· 
3 

1 
= 

3 

Why is this correct? 

The answer goes back to the definition of conditional probability. Rewriting this in a 
slightly different form gives the Product Rule for probabilities: 

Definition 3.1 (Product Rule for 2 Events). If Pr {A2} = 0, then: 

Pr {A1 ∩ A2} = Pr {A1} · Pr {A2 A1}| 

Multiplying edge probabilities in a tree diagram amounts to evaluating the right side of 
this equation. For example: 

Pr {win first game ∩ win second game} 

= Pr {win first game} · Pr {win second game win first game}|
1 2 

= 
2
· 
3 

So the Product Rule is the formal justification for multiplying edge probabilities to get 
outcome probabilities! 

To justify multiplying edge probabilities along longer paths, we need a more general form 
the Product Rule: 

Definition 3.2 (Product Rule for n Events). If Pr {A1 ∩ . . . ∩ An−1} = 0, then: 

Pr {A1 ∩ . . . ∩ A n A1 ∩ . . . ∩ An} = Pr {A1}·Pr {A2 | A1}·Pr {A3 | A1 ∩ A2} · · ·Pr {A | n−1} 

Let’s interpret this big formula in terms of tree diagrams. Suppose we want to compute 
the probability that an experiment traverses a particular root­to­leaf path of length n. Let 
Ai be the event that the experiment traverses the i­th edge of the path. Then A1 ∩ . . .∩An 

is the event that the experiment traverse the whole path. The Product Rule says that 
the probability of this is the probability that the experiment takes the first edge times 
the probability that it takes the second, given it takes the first edge, times the probability 
it takes the third, given it takes the first two edges, and so forth. In other words, the 
probability of an outcome is the product of the edge probabilities along the corresponding 
root­to­leaf path. 
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3.3 The Law of Total Probability 

The following identity 

Pr {A} = Pr {A E} · Pr {E}+ Pr| A
 E
 Pr E
 .·

is called the Law of Total Probability and lets you compute the probability of an event A 
using case analysis based on whether or not event E occurs. For example, suppose we 
conduct the following experiment. First, we flip a coin. If heads comes up, then we roll 
one die and take the result. If tails comes up, then we roll two dice and take the sum of 
the two results. What is the probability that this process yields a 2? Let E be the event 
that the coin comes up heads, and let A be the event that we get a 2 overall. Assuming 
that the coin is fair, Pr {E} = Pr E = 1/2. There are now two cases. If we flip heads, 
then we roll a 2 on a single die with probabilty Pr {A On the other hand, 
if we flip tails, then we get a sum of 2 on two dice with probability Pr 

E} = 1/6.| 
A E = 1/36. 

Therefore, the probability that the whole process yields a 2 is 

1 1 1 1 7
Pr {A} = + = . 

2 
· 
6 2 

· 
36 72 

More generally, if E1, . . . , En are disjoint events whose union is the whole sample space, 
then: 

n

Pr {A} = Pr {A | Ei} · Pr {Ei} . 
i=1 

3.4 A Posteriori Probabilities 

Suppose that we turn the hockey question around: what is the probability that the Halting 
Problem won their first game, given that they won the series? 

This seems like an absurd question! After all, if the Halting Problem won the series, then 
the winner of the first game has already been determined. Therefore, who won the first 
game is a question of fact, not a question of probability. However, our mathematical the­
ory of probability contains no notion of one event preceding another— there is no notion 
of time at all. Therefore, from a mathematical perspective, this is a perfectly valid ques­
tion. And this is also a meaningful question from a practical perspective. Suppose that 
you’re told that the Halting Problem won the series, but not told the results of individual 
games. Then, from your perspective, it makes perfect sense to wonder how likely it is 
that The Halting Problem won the first game. 

A conditional probability Pr {B A} is called an a posteriori if event B precedes event A|
in time. Here are some other examples of a posteriori probabilities: 

• The probability it was cloudy this morning, given that it rained in the afternoon. 
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•	 The probability that I was initially dealt two queens in Texas No Limit Hold ’Em 
poker, given that I eventually got four­of­a­kind. 

Mathematically, a posteriori probabilities are no different from ordinary probabilities; the 
distinction is only at a higher, philosophical level. Our only reason for drawing attention 
to them is to say, “Don’t let them rattle you.” 

Let’s return to the original problem. The probability that the Halting Problem won their 
first game, given that they won the series is Pr {B A}. We can compute this using the |
definition of conditional probability and our earlier tree diagram: 

Pr {B A} = 
Pr {B ∩ A}| 

Pr {A}
1/3 + 1/18 

= 
1/3 + 1/18 + 1/9 
7 

= 
9 

This answer is suspicious! In the preceding section, we showed that Pr {A B} was also |
7/9. Could it be true that Pr {A B} = Pr {B A} in general? Some reflection suggests | |
this is unlikely. For example, the probability that I feel uneasy, given that I was abducted 
by aliens, is pretty large. But the probability that I was abducted by aliens, given that I 
feel uneasy, is rather small. 

Let’s work out the general conditions under which Pr {A = Pr {B A}. By the | B} |
definition of conditional probability, this equation holds if an only if: 

Pr {A ∩ B} Pr {A ∩ B}
= 

Pr {B} Pr {A} 

This equation, in turn, holds only if the denominators are equal or the numerator is 0: 

Pr {B} = Pr {A} or Pr {A ∩ B} = 0 

The former condition holds in the hockey example; the probability that the Halting Prob­
lem wins the series (event A) is equal to the probability that it wins the first game (event 
B). In fact, both probabilities are 1/2. 

3.5 A Coin Problem 

Someone hands you either a fair coin or a trick coin with heads on both sides. You flip 
the coin 100 times and see heads every time. What can you say about the probability that 
you flipped the fair coin? Remarkably— nothing! 

In order to make sense out of this outrageous claim, let’s formalize the problem. The 
sample space is worked out in the tree diagram below. We do not know the probability 
that you were handed the fair coin initially— you were just given one coin or the other— 
so let’s call that p. 



19 Course Notes, Week 12: Introduction to Probability


result of
100 flips

1 100

1/2100

1001−1/2

event A:
given fair

coin?

event B:
flipped

all heads?
coin given

to you

fair coin

trick coin

all heads

some tails

all heads
probability

X

X

X

X 1−p

p / 2

p − p / 2

100

100

p

1−p

Let A be the event that you were handed the fair coin, and let B be the event that you 
flipped 100 heads. Now, we’re looking for Pr {A B}, the probability that you were |
handed the fair coin, given that you flipped 100 heads. The outcome probabilities are 
worked out in the tree diagram. Plugging the results into the definition of conditional 
probability gives: 

Pr {A B} = 
Pr {A ∩ B}| 

Pr {B}
p/2100 

= 
1− p + p/2100 

p 
= 

100(1− p) + p2

100 This expression is very small for moderate values of p because of the 2 term in the 
denominator. For example, if p = 1/2, then the probability that you were given the fair 
coin is essentially zero. 

But we do not know the probability p that you were given the fair coin. And perhaps the 
1 − 2−100value of p is not moderate; in fact, maybe p = . Then there is nearly an even 

chance that you have the fair coin, given that you flipped 100 heads. In fact, maybe you 
were handed the fair coin with probability p = 1. Then the probability that you were 
given the fair coin is, well, 1! 

A similar problem arises in polling before an election. A pollster picks a random Ameri­
can and asks his or her party affiliation. If this process is repeated many times, what can 
be said about the population as a whole? To clarify the analogy, suppose that the country 
contains only two people. There is either one Republican and one Democrat (like the fair 
coin), or there are two Republicans (like the trick coin). The pollster picks a random citi­
zen 100 times, which is analogous to flipping the coin 100 times. Suppose that he picks a 
Republican every single time. However, even given this polling data, the probability that 
there is one citizen in each party could still be anywhere between 0 and 1! 
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What the pollster can say is that either: 

1. Something earth­shatteringly unlikely happened during the poll. 

2. There are two Republicans. 

This is as far as probability theory can take us; from here, you must draw your own con­
clusions. Based on life experience, many people would consider the second possibility 
more plausible. However, if you are just convinced that the country isn’t entirely Repub­
lican (say, because you’re a citizen and a Democrat), then you might believe that the first 
possibility is actually more likely. 

3.6 Medical Testing 

There is a deadly disease called X that has infected 10% of the population. There are no 
symptoms; victims just drop dead one day. Fortunately, there is a test for the disease. The 
test is not perfect, however: 

•	 If you have the disease, there is a 10% chance that the test will say you do not. (These 
are called “false negatives”.) 

•	 If you do not have disease, there is a 30% chance that the test will say you do. (These 
are “false positives”.) 

A random person is tested for the disease. If the test is positive, then what is the proba­
bility that the person has the disease? 

Step 1: Find the Sample Space 

The sample space is found with the tree diagram below. 

person
has X?

test result outcome
probability event A    B?

yes

no

pos

neg

pos

neg

.1

.9

.9

.1

.3

.7

.09

.01

.27

.63
event A: event B:

has
disease?

test
positive?
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Step 2: Define Events of Interest 

Let A be the event that the person has the disease. Let B be the event that the test was 
positive. The outcomes in each event are marked in the tree diagram. We want to find 
Pr {A B}, the probability that a person has disease X , given that the test was positive. | 

Step 3: Find Outcome Probabilities 

First, we assign probabilities to edges. These probabilities are drawn directly from the 
problem statement. By the Product Rule, the probability of an outcome is the product of 
the probabilities on the corresponding root­to­leaf path. All probabilities are shown in 
the figure. 

Step 4: Compute Event Probabilities 

Pr {A B} = 
Pr {A ∩ B}| 

Pr {B}
0.09 

= 
0.09 + 0.27 
1 

= 
4 

If you test positive, then there is only a 25% chance that you have the disease! 

This answer is initially surprising, but makes sense on reflection. There are two ways 
you could test positive. First, it could be that you are sick and the test is correct. Second, 
it could be that you are healthy and the test is incorrect. The problem is that almost 
everyone is healthy; therefore, most of the positive results arise from incorrect tests of 
healthy people! 

We can also compute the probability that the test is correct for a random person. This 
event consists of two outcomes. The person could be sick and the test positive (probability 
0.09), or the person could be healthy and the test negative (probability 0.63). Therefore, 
the test is correct with probability 0.09 + 0.63 = 0.72. This is a relief; the test is correct 
almost three­quarters of the time. 

But wait! There is a simple way to make the test correct 90% of the time: always return 
a negative result! This “test” gives the right answer for all healthy people and the wrong 
answer only for the 10% that actually have the disease. The best strategy is to completely 
ignore the test result! 

There is a similar paradox in weather forecasting. During winter, almost all days in 
Boston are wet and overcast. Predicting miserable weather every day may be more accu­
rate than really trying to get it right! 
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3.7 Other Identities 

There is a close relationship between computing the size of a set and computing the prob­
ability of an event. The inclusion­exclusion formula is one such example; the probability 
of a union of events and the cardinality of a union of sets are computed using similar 
formulas. 

In fact, all of the methods we developed for computing sizes of sets carry over to com­
puting probabilities. This is because a probability space is just a weighted set; the sample 
space is the set and the probability function assigns a weight to each element. Earlier, we 
were counting the number of items in a set. Now, when we compute the probability of an 
event, we are just summing the weights of items. We’ll see many examples of the close 
relationship between probability and counting over the next few weeks. 

Many general probability identities still hold when all probabilities are conditioned on the 
same event. For example, the following identity is analogous to the Inclusion­Exclusion 
formula for two sets, except that all probabilities are conditioned on an event C. 

Pr {A ∪B C} = Pr {A C}+ Pr {B C} .| | | C} − Pr {A ∩B | 

As a special case we have 

Pr {A ∪B C} = Pr {A C}+ Pr {B when A ∩B = .| | | C} ∅

Be careful not to mix up events before and after the conditioning bar! For example, the 
following is not a valid identity: 

False Claim. 

Pr {A B ∪ C} = Pr {A B}+ Pr {A when B ∩ C = . (1)| | | C} ∅

4 Independence 

Suppose that we flip two fair coins simultaneously on opposite sides of a room. Intu­
itively, the way one coin lands does not affect the way the other coin lands. The mathe­
matical concept that captures this intuition is called independence: 

Definition. Events A and B are independent if and only if: 

Pr {A ∩B} = Pr {A} · Pr {B} 

Generally, independence is something you assume in modeling a phenomenon— or wish 
you could realistically assume. Many useful probability formulas only hold if certain 
events are independent, so a dash of independence can greatly simplify the analysis of a 
system. 
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4.1 Examples 

Let’s return to the experiment of flipping two fair coins. Let A be the event that the first 
coin comes up heads, and let B be the event that the second coin is heads. If we assume 
that A and B are independent, then the probability that both coins come up heads is: 

Pr {A ∩B} = Pr {A} · Pr {B}
1 1 

= 
2 
· 
2 

1 
= 

4 

On the other hand, let C be the event that tomorrow is cloudy and R be the event that 
tomorrow is rainy. Perhaps Pr {C} = 1/5 and Pr {R} = 1/10 around here. If these events 
were independent, then we could conclude that the probability of a rainy, cloudy day was 
quite small: 

Pr {R ∩ C} = Pr {R} · Pr {C}
1 1 

= 
5 
· 
10 

1 
= 

50 

Unfortunately, these events are definitely not independent; in particular, every rainy day 
is cloudy. Thus, the probability of a rainy, cloudy day is actually 1/10. 

4.2 Working with Independence 

There is another way to think about independence that you may find more intuitive. 
According to the definition, events A and B are independent if and only if Pr {A ∩B} = 
Pr {A} · Pr {B}. This equation holds even if Pr {B} = 0, but assuming it is not, we can 
divide both sides by Pr {B} and use the definition of conditional probability to obtain an 
alternative formulation of independence: 

Proposition. If Pr {B} = 0, then events A and B are independent if and only if 

Pr {A B} = Pr {A} . (2)| 

Equation (2) says that events A and B are independent if the probability of A is unaffected 
by the fact that B happens. In these terms, the two coin tosses of the previous section were 
independent, because the probability that one coin comes up heads is unaffected by the 
fact that the other came up heads. Turning to our other example, the probability of clouds 
in the sky is strongly affected by the fact that it is raining. So, as we noted before, these 
events are not independent. 
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4.3 Some Intuition 

Suppose that A and B are disjoint events, as shown in the figure below. 

A
B

Are these events independent? Let’s check. On one hand, we know 

Pr {A ∩B} = 0 

because A ∩B contains no outcomes. On the other hand, we have 

Pr {A} · Pr {B} > 0 

except in degenerate cases where A or B has zero probability. Thus, disjointness and inde­
pendence are very different ideas. 

Here’s a better mental picture of what independent events look like. 
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A

B

The sample space is the whole rectangle. Event A is a vertical stripe, and event B is a 
horizontal stripe. Assume that the probability of each event is proportional to its area in 
the diagram. Now if A covers an α­fraction of the sample space, and B covers a β­fraction, 
then the area of the intersection region is α β. In terms of probability: ·

Pr {A ∩B} = Pr {A} · Pr {B} 
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5 Mutual Independence 

We have defined what it means for two events to be independent. But how can we talk 
about independence when there are more than two events? For example, how can we say 
that the orientations of n coins are all independent of one another? 

Events E1, . . . , En are mutually independent if and only if for every subset of the events, the 
probability of the intersection is the product of the probabilities. In other words, all of the 
following equations must hold: 

Pr {Ei ∩ Ej} = Pr {Ei} · Pr {Ej} for all distinct i, j 
Pr {Ei ∩ Ej ∩ Ek} = Pr {Ei} · Pr {Ej} · Pr {Ek} for all distinct i, j, k 

Pr {Ei ∩ Ej ∩ Ek ∩ El} = Pr {Ei} · Pr {Ej} · Pr {Ek} · Pr {El} for all distinct i, j, k, l 
. . . 

Pr {E1 ∩ · · · ∩ En} = Pr {E1} · · ·Pr {En} 

As an example, if we toss 100 fair coins and let Ei be the event that the ith coin lands 
heads, then we might reasonably assume than E1, . . . , E100 are mutually independent. 

5.1 DNA Testing 

This is testimony from the O. J. Simpson murder trial on May 15, 1995: 

MR. CLARKE: When you make these estimations of frequency— and I believe 
you touched a little bit on a concept called independence? 

DR. COTTON: Yes, I did. 

MR. CLARKE: And what is that again? 

DR. COTTON: It means whether or not you inherit one allele that you have is 
not— does not affect the second allele that you might get. That is, if you 
inherit a band at 5,000 base pairs, that doesn’t mean you’ll automatically or 
with some probability inherit one at 6,000. What you inherit from one parent 
is what you inherit from the other. (Got that? – EAL) 

MR. CLARKE: Why is that important? 

DR. COTTON: Mathematically that’s important because if that were not the case, 
it would be improper to multiply the frequencies between the different ge­
netic locations. 

MR. CLARKE: How do you— well, first of all, are these markers independent 
that you’ve described in your testing in this case? 
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The jury was told that genetic markers in blood found at the crime scene matched Simp­
son’s. Furthermore, the probability that the markers would be found in a randomly­
selected person was at most 1 in 170 million. This astronomical figure was derived from 
statistics such as: 

• 1 person in 100 has marker A. 

• 1 person in 50 marker B. 

• 1 person in 40 has marker C. 

• 1 person in 5 has marker D. 

• 1 person in 170 has marker E. 

Then these numbers were multiplied to give the probability that a randomly­selected 
person would have all five markers: 

Pr {A ∩B ∩ C ∩D ∩ E} = Pr {A} · Pr {B} · Pr {C} · Pr {D} · Pr {E}
1 1 1 1 1 

= 
100 

· 
50 

· 
40 

· 
5 
· 
170 

1 
= 

170, 000, 000 

The defense pointed out that this assumes that the markers appear mutually indepen­
dently. Furthermore, all the statistics were based on just a few hundred blood samples. 
The jury was widely mocked for failing to “understand” the DNA evidence. If you were 
a juror, would you accept the 1 in 170 million calculation? 

5.2 Pairwise Independence 

The definition of mutual independence seems awfully complicated— there are so many 
conditions! Here’s an example that illustrates the subtlety of independence when more 
than two events are involved and the need for all those conditions. Suppose that we flip 
three fair, mutually­independent coins. Define the following events: 

• A1 is the event that coin 1 matches coin 2. 

• A2 is the event that coin 2 matches coin 3. 

• A3 is the event that coin 3 matches coin 1. 

Are A1, A2, A3 mutually independent? 

The sample space for this experiment is: 

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 
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Every outcome has probability (1/2)3 = 1/8 by our assumption that the coins are mutu­
ally independent. 

To see if events A1, A2, and A3 are mutually independent, we must check a sequence of 
equalities. It will be helpful first to compute the probability of each event Ai: 

Pr {A1} = Pr {HHH}+ Pr {HHT}+ Pr {TTH}+ Pr {TTT}
1 1 1 1


= + + + 
8 8 8 8

1


= 
2


By symmetry, Pr {A2} = Pr {A3} = 1/2 as well. Now we can begin checking all the

equalities required for mutual independence.


Pr {A1 ∩ A2} = Pr {HHH}+ Pr {TTT}
1 1


= + 
8 8

1


= 
4

1 1


= 
2 
· 
2


By symmetry, Pr {A1 ∩ A3} = Pr {A1} · Pr {A3} and Pr {A2 ∩ A3} = Pr {A2} · Pr {A3} must 
hold also. Finally, we must check one last condition: 

= Pr {A1}Pr {A2}


Pr {A1 ∩ A2 ∩ A3} = Pr {HHH}+ Pr {TTT}
1 1


= + 
8 8

1


= 
4


1

= Pr {A1}Pr {A2}Pr {A3} =�

8 
The three events A1, A2, and A3 are not mutually independent, even though all pairs of 
events are independent! 

A set of events in pairwise independent if every pair is independent. Pairwise indepen­
dence is a much weaker property than mutual independence. For example, suppose that 
the prosecutors in the O. J. Simpson trial were wrong and markers A, B, C, D, and E ap­
pear only pairwise independently. Then the probability that a randomly­selected person 
has all five markers is no more than: 

Pr {A ∩B ∩ C ∩D ∩ E} ≤ Pr {A ∩ E} 

= Pr {A} · Pr {E}
1 1


= 
100 

· 
170


1

= 

17, 000 
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The first line uses the fact that A ∩ B ∩ C ∩ D ∩ E is a subset of A ∩ E. (We picked out 
the A and E markers because they’re the rarest.) We use pairwise independence on the 
second line. Now the probability of a random match is 1 in 17,000— a far cry from 1 in 
170 million! And this is the strongest conclusion we can reach assuming only pairwise 
independence. 
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