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Random Variables, Distributions and Expectation 

1 Random Variables 

We’ve used probablity to model a variety of experiments, games, and tests. Throughout, 
we have tried to compute probabilities of events. We asked, for example, what is the 
probability of the event that you win the Monty Hall game? What is the probability of 
the event that it rains, given that the weatherman carried his umbrella today? What is the 
probability of the event that you have a rare disease, given that you tested positive? 

But one can ask more general questions about an experiment. How hard will it rain? How 
long will this illness last? How much will I lose playing 6.042 games all day? These ques­
tions are fundamentally different and not easily phrased in terms of events. The problem 
is that an event either does or does not happen: you win or lose, it rains or doesn’t, you’re 
sick or not. But these questions are about matters of degree: how much, how hard, how 
long? To approach these questions, we need a new mathematical tool. 

1.1 Definition 

Let’s begin with an example. Consider the experiment of tossing three independent, un­
biased coins. Let C be the number of heads that appear. Let M = 1 if the three coins 
come up all heads or all tails, and let M = 0 otherwise. Now every outcome of the three 
coin flips uniquely determines the values of C and M . For example, if we flip heads, tails, 
heads, then C = 2 and M = 0. If we flip tails, tails, tails, then C = 0 and M = 1. In effect, 
C counts the number of heads, and M indicates whether all the coins match. 

Since each outcome uniquely determines C and M , we can regard them as functions map­
ping outcomes to numbers. For this experiment, the sample space is: 

= {HHH, HHT, HTH,HTT, THH, THT, TTH, TTT} .S 

Now C is a function that maps each outcome in the sample space to a number as follows: 

C(HHH) = 3 
C(HHT ) = 2 
C(HTH) = 2 
C(HTT ) = 1 

C(THH) = 2 
C(THT ) = 1 
C(TTH) = 1 
C(TTT ) = 0. 
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Similarly, M is a function mapping each outcome another way: 

M(HHH) = 1 
M(HHT ) = 0 
M(HTH) = 0 
M(HTT ) = 0 

M(THH) = 0 
M(THT ) = 0 
M(TTH) = 0 
M(TTT ) = 1. 

The functions C and M are examples of random variables. In general, a random variable 
is a function whose domain is the sample space. (The codomain can be anything, but 
we’ll usually use a subset of the real numbers.) Notice that the name “random variable” 
is a misnomer; random variables are actually functions! 

1.2 Indicator Random Variables 

An indicator random variable (or simply an indicator, or a Bernoulli random variable) 
is a random variable that maps every outcome to either 0 or 1. The random variable M is 
an example. If all three coins match, then M = 1; otherwise, M = 0. 

Indicator random variables are closely related to events. In particular, an indicator parti­
tions the sample space into those outcomes mapped to 1 and those outcomes mapped to 
0. For example, the indicator M partitions the sample space into two blocks as follows: 

HHH �� TTT HHT HTH HTT �� THH THT TTH � . 
M = 1 M = 0 

In the same way, an event partitions the sample space into those outcomes in the event 
and those outcomes not in the event. Therefore, each event is naturally associated with 
a certain indicator random variable and vice versa: an indicator for an event E is an 
indicator random variable that is 1 for all outcomes in E and 0 for all outcomes not in E. 
Thus, M is an indicator random variable for the event that all three coins match. 

1.3 Random Variables and Events 

There is a strong relationship between events and more general random variables as well. 
A random variable that takes on several values partitions the sample space into several 
blocks. For example, C partitions the sample space as follows: 

TTT TTH THT HTT � THH HTH HHT � HHH .� �� � � �� � �� � �� � 
C = 0 C = 1 C = 2 C = 3 

Each block is a subset of the sample space and is therefore an event. Thus, we can regard 
an equation or inequality involving a random variable as an event. For example, the event 
that C = 2 consists of the outcomes THH , HTH , and HHT . The event C ≤ 1 consists of 
the outcomes TTT , TTH , THT , and HTT . 
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Naturally enough, we can talk about the probability of events defined by equations in­
volving random variables. For example: 

Pr {C = 2} = Pr {THH} + Pr {HTH} + Pr {HHT}
1 1 1 

= + + 
8 8 8 
3 

= . 
8 

As another example: 

Pr {M = 1} = Pr {TTT} + Pr {HHH}
1 1 

= + 
8 8 
1 

= . 
4 

1.4 Conditional Probability 

Mixing conditional probabilities and events involving random variables creates no new 
difficulties. For example, Pr {C ≥ 2 M = 0} is the probability that at least two coins are |
heads (C ≥ 2), given that not all three coins are the same (M = 0). We can compute this 
probability using the definition of conditional probability: 

Pr {C ≥ 2 M = 0} = 
Pr {[C ≥ 2] ∩ [M = 0]}| 

Pr {M = 0}
Pr {{THH,HTH, HHT}}

= 
Pr {{THH,HTH, HHT, HTT, THT, TTH}}
3/8 

= 
6/8 
1 

= . 
2 

The expression [C ≥ 2] ∩ [M = 0] on the first line may look odd; what is the set operation 
∩ doing between an inequality and an equality? But recall that, in this context, [C ≥ 2] 
and [M = 0] are events, namely, sets of outcomes. 

1.5 Independence 

The notion of independence carries over from events to random variables as well. Ran­
dom variables R1 and R2 are independent if for all x1 in the codomain of R1, and x2 in the 
codomain of R2, we have: 

Pr {[R1 = x1] ∩ [R2 = x2]} = Pr {R1 = = x2} .x1} · Pr {R2 
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As with events, we can formulate independence for random variables in an equivalent 
and perhaps more intuitive way: random variables R1 and R2 are independent if for all 
x1 and x2 in the codomains of R1 and R2 respectively, such that Pr {R2 = x2} > 0, we 
have: 

Pr {R1 = x1 R2 = x2} = Pr {R1 = x1} .| 

In words: the probability that R1 takes on a particular value is unaffected by the value of 
R2. 

As an example, are C and M independent? Intuitively, the answer should be “no”. 
The number of heads, C, completely determines whether all three coins match; that is, 
whether M = 1. But, to verify this intuition, we must find some x1, x2 ∈ R such that: 

Pr {[C = x1] [M = x2}] = Pr {C = x1} · Pr {M = x2} .∩ �

One appropriate choice of values is x1 = 2 and x2 = 1. In this case, we have: 

3 1
Pr {[C = 2] ∩ [M = 1]} = 0 but Pr {C = 2} · Pr {M = 1} = = 0. 

8 
· 
4 
�

The first probability is zero because we never have exactly two heads (C = 2) when all 
three coins match (M = 1). The other two probabilities were computed earlier. 

The notion of independence generalizes to a set of random variables as follows. Random 
variables R1, R2, . . . , Rn are mutually independent if for all x1, x2, . . . , xn, in the codomains 
of R1, R2, . . . , Rn respectively, we have: 

Pr {[R1 = x1] ∩ [R2 = x2] [Rn = xn]}∩ · · · ∩
= Pr {R1 = x1} · Pr {R2 = n = xn} .x2} · · ·Pr {R

A consequence of this definition of mutual independence is that the probability that any 
subset of the variables takes a particular set of values is equal to the product of the proba­
bilites that the individual variables take their values. Thus, for example, if R1, R2, . . . , R100 

are mutually independent random variables, then it follows that: 

Pr {[R1 = 7] ∩ [R7 = 9.1] ∩ [R23 = π] = Pr {R1 = 7} · Pr {R7 = 9.1} · Pr {R23 = π} .} 

2 The Birthday Principle 

There are 100 students in a lecture hall. What is the probability that some two people 
share a birthday? Maybe about 1/3? Let’s check! We’ll use the following two variables 
throughout our analysis: 

• Let n be the number of people in the group. 

• Let d be the number of days in the year. 
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Furthermore, we’ll make the assumption that birthdays are uniformly­distributed, inde­
pendent random variables. This assumption is not really valid in the real world, since 
more babies are born at certain times of year and the birthdays of twins are clearly not 
independent. However, our analysis of this problem applies to many situations in com­
puter science that are unaffected by twins, leap days, and romantic holidays anyway, so 
we won’t dwell on those complications. 

The sample space for this experiment consists of all ways of assigning birthdays to the 
people of the group. There are dn such assignments, since the first person can have d 
different birthdays, the second person can have d different birthdays, and so forth. Fur­
thermore, every such assignment is equally probable by our assumption that birthdays 
are uniformly­distributed and mutually independent, so the sample space is uniform. 

Let D be the event that everyone has a distinct birthday. This is the complement of the 
event that we’re interested in, but the probability of D is easier to evaluate. Later we can 
use the fact that Pr D = 1−Pr {D} to compute the probability we really want. Anyway, 
event D consists of d(d−1)(d−2) · · · (d−n+1) outcomes, since we can select the birthday 
of the first person in d days, the birthday of the second person in d− 1 ways, and so forth. 
Therefore, the probability that everyone has a different birthday is: 

Pr {D} = 
d(d − 1)(d − 2) · · · (d − n + 1) 

. 
dn 

For n = 100, this probability is actually fantastically small —less than one in a million! If 
there are 100 people in a room, two are almost certain to share a birthday. 

Let’s use an approximation to rewrite the right side of the preceding equation in a more 
insightful form: � � � � � � � � 

0 1
Pr {D} = 1 − 1 − 1 − 

2
1 − 

n − 1 

d d d 
· · · 

d 

≈ e 0 e−1/d e−2/d e−(n−1)/d · · · · ·
−n(n−1) 

2d .= e 

In the first step, we pair each term in the numerator with a d term in the denominator. 
Next, we use the approximation e−x ≈ 1−x, which is pretty accurate when x is small.1 In 
the last step, we combine exponents using the familiar formula 0 + 1 + 2 + · · ·+ (n − 1) = 
n(n − 1)/2. 

The exponent in the final expression above is −1 when n ≈
√

2d. This is roughly the break­
even point, where the probability that two people share a birthday is in the ballpark of 
1/2. This leads to a rule called the birthday principle, which is useful in many contexts in 
computer science: 

If there are d days in a year and 
√

2d people in a room, then the probability 
that two share a birthday is about 1 − 1/e ≈ 0.632. 

1This approximation is obtained by truncating the Taylor series e−x = 1− x + x2/2! − x3/3! + · · · 
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For example, this principle says that if you have 
√

2 365 ≈ 27 people in a room, then the · 
probability that two share a birthday is about 0.632. The actual probability is about 0.626, 
so the approximation is quite good. 

The Birthday Principle is a great rule of thumb with surprisingly many applications. For 
example, cryptographic systems and digital signature schemes must be hardened against 
“birthday attacks”. The principle also tells us how many items can be inserted into a hash 
table before one starts to experience collisions. 

3 Probability Distributions 

A random variable is defined to be a function whose domain is the sample space of an 
experiment. Often, however, random variables with essentially the same properties show 
up in completely different experiments. For example, some random variable that come up 
in polling, in primality testing, and in coin flipping all share some common properties. 
If we could study such random variables in the abstract, divorced from the details any 
particular experiment, then our conclusions would apply to all the experiments where 
that sort of random variable turned up. Such general conclusions could be very useful. 
There are a couple tools that capture the essential properties of a random variable, but 
leave other details of the associated experiment behind. 

The probability density function (pdf) for a random variable R with codomain V is a 
function PDFR : V → [0, 1] defined by: 

PDFR(x) = Pr {R = x} 

A consequence of this definition is that 

PDFR(x) = 1 
x∈V 

since the random variable always takes on exactly one value in the set V . 

As an example, let’s return to the experiment of rolling two fair, independent dice. As 
before, let T be the total of the two rolls. This random variable takes on values in the set 
V = {2, 3, . . . , 12}. A plot of the probability density function is shown below: 

6/36 6 

PDFR(x)
3/36 

-

2 3 4 5 6 7 8 9 10 11 12 

x ∈ V 
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The lump in the middle indicates that sums close to 7 are the most likely. The total area 
of all the rectangles is 1 since the dice must take on exactly one of the sums in V = 
{2, 3, . . . , 12}. 

A closely­related idea is the cumulative distribution function (cdf) for a random variable 
R. This is a function CDFR : V → [0, 1] defined by: 

CDFR(x) = Pr {R ≤ x} 

As an example, the cumulative distribution function for the random variable T is shown 
below: 

1 6 

CDFR(x) 

1/2 

-0 
2 3 4 5 6 7 8 9 10 11 12 

x ∈ V 

The height of the i­th bar in the cumulative distribution function is equal to the sum of the 
heights of the leftmost i bars in the probability density function. This follows from the 
definitions of pdf and cdf: 

CDFR(x) = Pr {R ≤ x} 

= Pr {R = y}
y≤x 

= PDFR(y) 
y≤x 

In summary, PDFR(x) measures the probability that R = x and CDFR(x) measures the 
probability that R ≤ x. Both the PDFR and CDFR capture the same information about 
the random variable R— you can derive one from the other— but sometimes one is more 
convenient. The key point here is that neither the probability density function nor the cu­
mulative distribution function involves the sample space of an experiment. Thus, through 
these functions, we can study random variables without reference to a particular experi­
ment. 

We’ll now look at three important distributions and some applications. 
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3.1 Bernoulli Distribution 

Indicator random variables are perhaps the most common type because of their close 
association with events. The probability density function of an indicator random variable 
B is always 

PDFB(0) = p 

PDFB(1) = 1 − p 

where 0 ≤ p ≤ 1. The corresponding cumulative distribution function is: 

CDFB(0) = p 

CDFB(1) = 1 

3.2 Uniform Distribution 

A random variable that takes on each possible value with the same probability is called 
uniform. For example, the probability density function of a random variable U that is 
uniform on the set {1, 2, . . . , N} is: 

1
PDFU(k) = 

N 

And the cumulative distribution function is: 

k
CDFU(k) = 

N 

Uniform distributions come up all the time. For example, the number rolled on a fair die 
is uniform on the set {1, 2, . . . , 6}. 

3.3 The Numbers Game 

Let’s play a game! I have two envelopes. Each contains an integer in the range 0, 1, . . . , 100, 
and the numbers are distinct. To win the game, you must determine which envelope con­
tains the larger number. To give you a fighting chance, I’ll let you peek at the number in 
one envelope selected at random. Can you devise a strategy that gives you a better than 
50% chance of winning? 

For example, you could just pick an evelope at random and guess that it contains the 
larger number. But this strategy wins only 50% of the time. Your challenge is to do better. 

So you might try to be more clever. Suppose you peek in the left envelope and see the 
number 12. Since 12 is a small number, you might guess that that other number is larger. 
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But perhaps I’m sort of tricky and put small numbers in both envelopes. Then your guess 
might not be so good! 

An important point here is that the numbers in the envelopes may not be random. I’m 
picking the numbers and I’m choosing them in a way that I think will defeat your guess­
ing strategy. I’ll only use randomization to choose the numbers if that serves my end: 
making you lose! 

3.3.1 Intuition Behind the Winning Strategy 

Amazingly, there is a strategy that wins more than 50% of the time, regardless of what 
numbers I put in the envelopes! 

Suppose that you somehow knew a number x between my lower number and higher num­
bers. Now you peek in an envelope and see one or the other. If it is bigger than x, then 
you know you’re peeking at the higher number. If it is smaller than x, then you’re peek­
ing at the lower number. In other words, if you know an number x between my lower 
and higher numbers, then you are certain to win the game. 

The only flaw with this brilliant strategy is that you do not know x. Oh well. 

But what if you try to guess x? There is some probability that you guess correctly. In this 
case, you win 100% of the time. On the other hand, if you guess incorrectly, then you’re 
no worse off than before; your chance of winning is still 50%. Combining these two cases, 
your overall chance of winning is better than 50%! 

Informal arguments about probability, like this one, often sound plausible, but do not 
hold up under close scrutiny. In contrast, this argument sounds completely implausible— 
but is actually correct! 

3.3.2 Analysis of the Winning Strategy 

For generality, suppose that I can choose numbers from the set {0, 1, . . . , n}. Call the lower 
number L and the higher number H . 

Your goal is to guess a number x between L and H . To avoid confusing equality cases, 
you select x at random from among the half­integers: 

1 1 1 1 
, 1 , 2 , . . . , n−

2 2 2 2 

But what probability distribution should you use?


The uniform distribution turns out to be your best bet. An informal justification is that

if I figured out that you were unlikely to pick some number— say 50
1 

2 
— then I’d always


put 50 and 51 in the evelopes. Then you’d be unlikely to pick an x between L and H and 
would have less chance of winning. 
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After you’ve selected the number x, you peek into an envelope and see some number p. 
If p > x, then you guess that you’re looking at the larger number. If p < x, then you guess 
that the other number is larger. 

All that remains is to determine the probability that this strategy succeeds. We can do this 
with the usual four­step method and a tree diagram. 

Step 1: Find the sample space. You either choose x too low (< L), too high (> H), or 
just right (L < x < H). Then you either peek at the lower number (p = L) or the higher 
number (p = H). This gives a total of six possible outcomes. 

x just right

1/2

1/2

1/2

1/2

1/2

1/2

L/n

(H−L)/n

(n−H)/n

choice of x

# peeked at result probability

win

win

x too high

x too low
win

lose

win

lose

L/2n

L/2n

(H−L)/2n

(H−L)/2n

(n−H)/2n

(n−H)/2n

p=H

p=L

p=H

p=L

p=H

p=L

Step 2: Define events of interest. The four outcomes in the event that you win are 
marked in the tree diagram. 

Step 3: Assign outcome probabilities. First, we assign edge probabilities. Your guess x 
is too low with probability L/n, too high with probability (n − H)/n, and just right with 
probability (H − L)/n. Next, you peek at either the lower or higher number with equal 
probability. Multiplying along root­to­leaf paths gives the outcome probabilities. 

Step 4: Compute event probabilities. The probability of the event that you win is the 
sum of the probabilities of the four outcomes in that event: 

L
Pr {win} = + 

H − L 
+ 

H − L 
+ 

n− H 

2n 2n 2n 2n 
1 H − L 

= + 
2 2n 
1 1 

+≥ 
2 2n 

The final inequality relies on the fact that the higher number H is at least 1 greater than 
the lower number L since they are required to be distinct. 

Sure enough, you win with this strategy more than half the time, regardless of the num­
bers in the envelopes! For example, if I choose numbers in the range 0, 1, . . . , 100, then 
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you win with probability at least 1 + 1 = 50.5%. Even better, if I’m allowed only num­
2 200 

bers in the range 0, . . . , 10, then your probability of winning rises to 55%! By Las Vegas 
standards, those are great odds! 

3.4 Binomial Distribution 

Of the more complex distributions, the binomial distribution is surely the most impor­
tant in computer science. The standard example of a random variable with a binomial 
distribution is the number of heads that come up in n independent flips of a coin; call this 
random variable H . If the coin is fair, then H has an unbiased binomial density function: 

n
PDFH(k) = 2−n 

k 

nThis follows because there are sequences of n coin tosses with exactly k heads, and 
k 

each such sequence has probability 2−n . 

Here is a plot of the unbiased probability density function PDFH(k) corresponding to 
n = 20 coins flips. The most likely outcome is k = 10 heads, and the probability falls off 
rapidly for larger and smaller values of k. These falloff regions to the left and right of the 
main hump are usually called the tails of the distribution. 

0.18 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 
0 5 10 15 20 

An enormous number of analyses in computer science come down to proving that the 
tails of the binomial and similar distributions are very small. In the context of a prob­
lem, this typically means that there is very small probability that something bad happens, 
which could be a server or communication link overloading or a randomized algorithm 
running for an exceptionally long time or producing the wrong result. 
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3.4.1 The General Binomial Distribution 

Now let J be the number of heads that come up on n independent coins, each of which is 
heads with probability p. Then J has a general binomial density function: 

n kPDFJ(k) = p (1 − p)n−k 

k 

nAs before, there are 
k 

sequences with k heads and n − k tails, but now the probability of 
keach such sequence is p (1 − p)n−k . 

As an example, the plot below shows the probability density function PDFJ(k) corre­
sponding to flipping n = 20 independent coins that are heads with probabilty p = 0.75. 
The graph shows that we are most likely to get around k = 15 heads, as you might expect. 
Once again, the probability falls off quickly for larger and smaller values of k. 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0 5 10 15 20 

3.4.2 Approximating the Binomial Density Function 

There is an approximate closed­form formula for the general binomial density function, 
though it is a bit unwieldy. First, we need an approximation for a key term in the exact 

nformula, 
k 

. For convenience, let’s replace k by αn where α is a number between 0 and 
1. Then, from Stirling’s formula, we find that: 

n 2nH(α) 

αn 
≤ � 

2πα(1 − α)n 

where H(α) is the famous entropy function: 

1 1 
H(α) ::= α log2 + (1 − α) log2α 1 − α 
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nThis upper bound on is very tight and serves as an excellent approximation. 
αn 

Now let’s plug this formula into the general binomial density function. The probability 
of flipping αn heads in n tosses of a coin that comes up heads with probability p is: 

2nH(α) 
αn(1 − p)(1−α)n · p (1)PDFJ(αn) ≤ � 

2πα(1 − α)n 

This formula is ugly as a bowling shoe, but quite useful. For example, suppose we flip a 
fair coin n times. What is the probability of getting exactly 1 n heads? Plugging α = 1/2

2

and p = 1/2 into this formula gives: 

2nH(1/2) 

2−nPDFJ(αn) ≤ � 
2π(1/2)(1 − (1/2))n 

· 

2 
= 

πn 

Thus, for example, if we flip a fair coin 100 times, the probability of getting exactly 50 
heads is about 1/

√
50π ≈ 0.079 or around 8%. 

3.5 Approximating the Cumulative Binomial Distribution Function 

Suppose a coin comes up heads with probability p. As before, let the random variable 
J be the number of heads that come up on n independent flips. Then the probability of 
getting at most k heads is given by the cumulative binomial distribution function: 

CDFJ(k) = Pr {J ≤ k}
k

= PDFJ(i) 
i=0 

k� n i= p (1 − p)n−i 

i 
i=0 

Evaluating this expression directly would be a lot of work for large k and n, so now an 
approximation would be really helpful. Once again, we can let k = αn; that is, instead 
of thinking of the absolute number of heads (k), we consider the fraction of flips that are 
heads (α). The following approximation holds provided α < p: 

1 − α 
PDFJ(αn)CDFJ(αn) ≤ 

1 − α/p 
·


2nH(α)
1 − α αn(1 − p)(1−α)n · p≤ 
1 − α/p 

· � 
2πα(1 − α)n 
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In the first step, we upper bound the summmation with a geometric sum and apply the 
formula for the sum of a geometric series. (The details are dull and omitted.) Then we 
insert the approximate formula (1) for PDFJ(αn) from the preceding section. 

You have to press a lot of buttons on a calculator to evaluate this formula for a specific 
choice of α, p, and n. (Even computing H(α) is a fair amount of work!) But for large 
n, evaluating the cumulative distribution function exactly requires vastly more work! So 
don’t look gift blessings in the mouth before they hatch. Or something. 

As an example, the probability of flipping at most 25 heads in 100 tosses of a fair coin is 
obtained by setting α = 1/4, p = 1/2 and n = 100: 

CDFJ 
n 1 − (1/4) � n � 3 

1.913 · 10−7 . 
4 
≤ 

1 − (1/4)/(1/2) 
· PDFJ 

4 
≤ 

2 
· 

This says that flipping 25 or fewer heads is extremely unlikely, which is consistent with 
our earlier claim that the tails of the binomial distribution are very small. In fact, notice 
that the probability of flipping 25 or fewer heads is only 50% more than the probability of 
flipping exactly 25 heads. Thus, flipping exactly 25 heads is twice as likely as flipping any 
number between 0 and 24! 

Caveat: The upper bound on CDFJ(αn) holds only if α < p. If this is not the case in your 
problem, then try thinking in complementary terms; that is, look at the number of tails 
flipped instead of the number of heads. In our example, the probability of flipping 75 
or more heads is the same as the probability of flipping 25 or fewer tails. By the above 
analysis, this is also extremely small. 

3.6 Polling 

Suppose we want to estimate the fraction of the U.S. voting population who would favor 
Hillary Clinton over Rudy Giuliani in the year 2008 presidential election.2 Let p be this 
unknown fraction. Let’s suppose we have some random process —say throwing darts 
at voter registration lists— which will select each voter with equal probability. We can 
define a Bernoulli variable, K, by the rule that K = 1 if the random voter most prefers 
Clinton, and K = 0 otherwise. 

Now to estimate p, we take a large number, n, of random choices of voters3 and count 
the fraction who favor Clinton. That is, we define variables K1, K2, . . . , where Ki is in­
terpreted to be the indicator variable for the event that the ith chosen voter prefers Clin­
ton. Since our choices are made independently, the Ki’s are independent. So formally, 

2We can only keep our fingers crossed for this race to happen – when they ran against each other for the 
U.S. Senate in 2000, they generated some of the best entertainment in TV history. 

3We’re choosing a random voter n times with replacement. That is, we don’t remove a chosen voter from 
the set of voters eligible to be chosen later; so we might choose the same voter more than once in n tries! We 
would get a slightly better estimate if we required n different people to be chosen, but doing so complicates 
both the selection process and its analysis with little gain in accuracy. 
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we model our estimation process by simply assuming we have mutually independent 
Bernoulli variables K1, K2, . . . , each with the same probability, p, of being equal to 1. Now 
let Sn be their sum, that is, 

n

Sn ::= Ki. (2) 
i=1 

So Sn has the binomial distribution with parameter, n, which we can choose, and un­
known parameter, p. 

The variable Sn/n describes the fraction of voters in our sample who favor Clinton. We 
would expect that Sn/n should be something like p. We will use the sample value, Sn/n, 
as our statistical estimate of p. 

In particular, suppose we want our estimate of p to be within 0.04 of p at least 95% of the 
time. Namely, we want �


Pr 
Sn 

n 
− p
 ≤ 0.04 ≥ 0.95 .


Let � be the margin of error we can tolerate, and let δ be the probability that our result lies 
outside this margin. We’re interested in having � = 0.04 and δ ≤ 0.05, but the derivation 
will be clearer if we postpone plugging these values in until the end. 

We want to determine the number, n, of times we must poll voters so that the value, Sn/n, 
of our estimate will, with probability at least 1− δ, be within � of the actual fraction in the 
nation favoring Clinton. 

We can define δ, the probability that our poll is off by more than the margin of error �, as 
follows: 

Sn Sn
δ = Pr ≤ p − � + Pr ≥ p + � 

n n 

too many in sample too many in sample 
prefer “Giuliani” prefer “Clinton” 

= Pr {Sn ≤ (p − �)n} + Pr {Sn ≥ (p + �)n} . 

Now 
CDFSn ((p − �)n) ::= Pr {Sn ≤ (p − �)n} 

Also, 
Pr {Sn ≥ (p + �)n} = Pr {n − Sn ≤ ((1 − p)− �)n} . 

But Tn ::= n − Sn is simply the number of voters in the sample who prefer Giuliani, which 
is a sum of Bernoulli random variables with parameter 1 − p, and therefore 

Pr {Tn ≤ ((1 − p)− �)n} = CDFTn ((1 − p)− �)n. 

Hence 
δ = CDFSn ((p − �)n) + CDFTn (((1 − p)− �)n). (3) 
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So we have reduced getting a good estimate of the required sample size to finding good 
bounds on two cumulative binomial distributions with parameters p and 1 − p respec­
tively. 

Using the bound on the cumulative binomial distribution function allows us to calculate 
an expression bounding (3) in terms of n, � and p. The problem is that this bound would 
contain p, the fraction of Americans that prefer Clinton. This is the unknown number 
we are trying to determine by polling! Fortunately, there is a simple way out of this 
circularity. Since (3) is symmetric in p, it has an inflection point when p = 1/2, and this 
inflection point is, in fact, its maximum: 

Fact. For all �, n, the maximum value of δ in equation (3) occurs when p = 1/2. 

In other words, the binomial tails fall off most slowly when p = 1/2. Using this fact, and 
plugging into the equations for CDFSn ((p − �)n) and CDFTn (((1 − p) − �)n), we get the 
following theorem: 

Theorem 3.1 (Binomial Sampling). Let K1, K2, . . . , be a sequence of mutually independent 
0­1­valued random variables with the same expectation, p, and let 

n

Sn ::= Ki. 
i=1 

Then, for 1/2 > � > 0, 

2−n(1−H((1/2)−�)) 

2π(1/4 − �2)n 
.
 (4)


S 1 + 2�nPr ≥ � ≤
n 
− p 

2� 
· 

We want � = 0.04, so plugging into (4) gives 

2−n(0.00462) 

δ ≤ 13.5 · 
1.2492

√
n 

(5) 

where δ is the probability that our estimate is not within � of p. We want to poll enough 
people so that δ ≤ 0.05. The easiest way to find the necessary sample size n is to plug in 
values for n to find the smallest one where in the righthand side of (5) is ≤ 0.05: 

n = people polled


500 
600 
623 
650 
664 
700 

upper bound on

probability poll is wrong


9.7% 
6.4% 
5.9% 
5.3% 
5.0% our poll size ←
4.3% 
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So 95% of the time, polling 6644 people will yield a fraction that is within 0.04 of the actual 
fraction of voters preferring Clinton. 

A remarkable point is that the population of the country has no effect on the poll size! 
Whether there are a thousand people or a billion in the country, polling only a few hun­
dred is sufficient! 

This method of estimation by sampling a quantity —voting preference in this example— 
is a technique that can obviously be used to estimate many other unknown quantities. 

Problem 1. Explaining Sampling to a Jury 

We just showed that merely sampling 662 voters will yield a fraction that, 95% of the time, 
is within 0.04 of the of the actual fraction of voters who prefer Clinton. The actual size of 
the voting population (10’s of millions) was never considered because it did not matter. 

Suppose you were going to serve as an expert witness in a trial. How would you explain 
why the number of people necessary to poll does not depend on the population size? 

4 Confidence Levels 

Suppose a pollster uses a sample of 662 random voters to estimate the fraction of voters 
who prefer Clinton, and the pollster finds that 364 of them prefer Clinton. It’s tempting, 
but sloppy, to say that this means: 

False Claim. With probability 0.95, the fraction, p, of voters who prefer Clinton is 364/662±0.04. 
Since 364/662− 0.04 > 0.50, there is a 95% chance that more than half the voters prefer Clinton. 

What’s objectionable about this statement is that it talks about the probability or “chance” 
that a real world fact is true, namely that the actual fraction, p, of voters favoring Clinton 
is more than 0.50. But p is what it is, and it simply makes no sense to talk about the 
probability that it is something else. For example, suppose p is actually 0.49; then it’s 
nonsense to ask about the probability that it is within 0.04 of 364/662 —it simply isn’t. 

A more careful summary of what we have accomplished goes this way: 

We have described a probabilistic procedure for estimating the value of the 
actual fraction, p. The probability that our estimation procedure will yield a value 
within 0.04 of p is 0.95. 

This is a bit of a mouthful, so special phrasing closer to the sloppy language is commonly 
used. The pollster would describe his conclusion by saying that 

At the 95% confidence level, the fraction of voters who prefer Clinton is 364/662±
0.04. 

4An exact calculation of the binomial CDF shows that a somewhat smaller poll size of 612 would be 
sufficient. 
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It’s important to remember that confidence levels refer to the results of estimation pro­
cedures for real­world quantities. The real­world quantity being estimated is typically 
unknown, but fixed; it is not a random variable, so it makes no sense to talk about the 
probability that it has some property. 

5 Expected Value 

The expectation or expected value of a random variable is a single number that tells you 
a lot about the behavior of the variable. Roughly, the expectation is the average value, 
where each value is weighted according to the probability that it comes up. Formally, the 
expected value of a random variable R defined on a sample space S is: 

E [R] = R(w) Pr {w}
w∈S 

To appreciate its signficance, suppose S is the set of students in a class, and we select a 
student uniformly at random. Let R be the selected student’s exam score. Then E [R] is 
just the class average— the first thing everyone want to know after getting their test back! 
In the same way, expectation is usually the first thing one wants to determine about any 
random variable. 

Let’s work through an example. Let R be the number that comes up on a fair, six­sided 
die. Then the expected value of R is: 

6� 1

E [R] = k
· 

6 
k=1 

1 1 1 1 1 1 
= 1 · + 2 · + 3 · + 4 · + 5 · + 6 ·

6 6 6 6 6 6 
7 

= 
2 

This calculation shows that the name “expected value” is a little misleading; the random 
variable might never actually take on that value. You can’t roll a 31 

2 
on an ordinary die! 

5.1 Equivalent Definitions of Expectation 

There are some other ways of writing the definition of expectation. Sometimes using one 
of these other formulations can make computing an expectation a lot easier. One option 
is to group together all outcomes on which the random variable takes on the same value. 

Theorem 5.1. � 
E [R] = x Pr {R = x}· 

x∈range(R) 
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Proof. We’ll transform the left side into the right. Let [R = x] be the event that R = x. 

E [R] = R(w) Pr {w}
w∈S 

= R(w) Pr {w} 
x∈range(R) w∈[R=x] 

= x Pr {w} 
x∈range(R) w∈[R=x]⎛ ⎞ ⎠= ⎝x · Pr {w} 
x∈range(R) w∈[R=x] 

= Pr {R = x}x ·
x∈range(R) 

On the second line, we break the single sum into two. The outer sum runs over all possible 
values x that the random variable takes on, and the inner sum runs over all outcomes 
taking on that value. Thus, we’re still summing over every outcome in the sample space 
exactly once. On the last line, we use the definition of the probability of the event [R = 
x]. 

Corollary 5.2. If R is a natural­valued random variable, then: 

∞

E [R] = Pr {R = i}i ·
i=0 

When you are considering a random variable that takes on values only in the natural numbers, 
N ::= {0, 1, 2, . . . }, there is yet another way to write the expected value: 

Theorem 5.3. If R is a natural­valued random variable, then: 

∞

E [R] = Pr {R > i}
i=0 

Proof. Consider the sum: 

Pr {R = 1} + Pr {R = 2} + Pr {R = 3} + · · · 
+ Pr {R = 2} + Pr {R = 3} + · · · 

+ Pr {R = 3} + · · · 
+ · · · 

The columns sum to 1 ·Pr {R = 1}, 2 ·Pr {R = 2}, 3 ·Pr {R = 3}, etc. Thus, the whole sum 
is equal to: 

∞

Pr {R = i} = E [R]i ·
i=0 
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Here, we’re using Corollary 5.2. On the other hand, the rows sum to Pr {R > 0}, Pr {R > 1}, 
Pr {R > 2}, etc. Thus, the whole sum is also equal to: 

∞

Pr {R > i}
i=0 

These two expressions for the whole sum must be equal, which proves the theorem. 

5.2 Expected Value of an Indicator Variable 

The expected value of an indicator random variable for an event is just the probability 
of that event. (Remember that a random variable IA is the indicator random variable for 
event A, if IA = 1 when A occurs and IA = 0 otherwise.) 

Lemma 5.4. If IA is the indicator random variable for event A, then 

E [IA] = Pr {A} . 

Proof. 

E [IA] = 1 · Pr {IA = 1} + 0 · Pr {IA = 0} 
= Pr {IA = 1} 
= Pr {A} . (Def. of IA) 

For example, if A is the event that a coin with bias p comes up heads, E [IA] = Pr {IA = 1} = 
p. 

5.3 Mean Time to Failure 

Let’s look at a problem where one of these alternative definitions of expected value is 
particularly helpful. A computer program crashes at the end of each hour of use with 
probability p, if it has not crashed already. What is the expected time until the program 
crashes? 

If we let R be the number of hours until the crash, then the answer to our problem is E [R]. 
This is a natural­valued variable, so we can use the formula: 

∞

E [R] = Pr {R > i}
i=0 
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We have R > i only if the system remains stable after i opportunities to crash, which 
happens with probability (1 − p)i. Plugging this into the formula above gives: 

∞

E [R] = (1 − p)i 

i=0 

1 
= 

1 − (1 − p) 
1 

= 
p 

The closed form on the second line comes from the formula for the sum of an infinite 
geometric series where the ratio of consecutive terms is 1 − p. 

So, for example, if there is a 1% chance that the program crashes at the end of each hour, 
then the expected time until the program crashes is 1/0.01 = 100 hours. The general prin­
ciple here is well­worth remembering: if a system fails at each time step with probability 
p, then the expected number of steps up to the first failure is 1/p. 

5.3.1 Making a Baby Girl 

A couple really wants to have a baby girl. There is a 50% chance that each child they have 
is a girl, and the genders of their children are mutually independent. If the couple insists 
on having children until they get a girl, then how many baby boys should they expect 
first? 

This is really a variant of the previous problem. The question, “How many hours until 
the program crashes?” is mathematically the same as the question, “How many children 
must the couple have until they get a girl?” In this case, a crash corresponds to having 
a girl, so we should set p = 1/2. By the preceding analysis, the couple should expect a 
baby girl after having 1/p = 2 children. Since the last of these will be the girl, they should 
expect just one boy. 

Something to think about: If every couple follows the strategy of having children until 
they get a girl, what will eventually happen to the fraction of girls born in this world? 
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