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Predicates & Sets 

1 More Proof Techniques 

1.1 Proof by Contradiction 

In a proof by contradiction or indirect proof , you show that if a proposition were false, then some 
logical contradiction or absurdity would follow. Thus, the proposition must be true. So proof by 
contradiction would be described by the inference rule 

Rule. 
¬ P −→ F 

P 

Proof by contradiction is always a viable approach. However, as the name suggests, indirect proofs 
can be a little convoluted. So direct proofs are generally preferable as a matter of clarity. 

1.2 Method 

In order to prove a proposition P by contradiction: 

1. Write, “We use proof by contradiction.” 

2. Write, “Suppose P is false.” 

3. Deduce a logical contradiction. 

4. Write, “This is a contradiction. Therefore, P must be true.” 

Example 

Remember that a number is rational if it is equal to a ratio of integers. For example, 3.5 = 7/2 and 
0.1111 . . . = 1/9 are rational numbers. On the other hand, we’ll prove by contradiction that 

√ 
2 is 

irrational. 

Theorem 1.1. 
√ 

2 is irrational. 
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Proof. We use proof by contradiction. Suppose the claim is false; that is, 
√

2 is rational. Then we 
can write 

√
2 as a fraction a/b in lowest terms. 

2Squaring both sides gives 2 = a2/b2 and so 2b2 = a . This implies that a is even; that is, a is a 
2multiple of 2. Therefore, a2 must be a multiple of 4. Because of the equality 2b2 = a2, we know 2b

must also be a multiple of 4. This implies that b2 is even and so b must be even. But since a and b 
are both even, the fraction a/b is not in lowest terms. 

This is a contradiction. Therefore, 
√

2 must be irrational. 

1.3 Potential Pitfall 

Often students use an indirect proof when a direct proof would be simpler. Such proofs aren’t 
wrong; they just aren’t excellent. Let’s look at an example. A function f is strictly increasing if 
f(x) > f(y) for all real x and y such that x > y. 

Theorem 1.2. If f and g are strictly increasing functions, then f + g is a strictly increasing function. 

Let’s first look at a simple, direct proof. 

Proof. Let x and y be arbitrary real numbers such that x > y. Then: 

f(x) > f(y) (since f is strictly increasing) 
g(x) > g(y) (since g is strictly increasing) 

Adding these inequalities gives: 

f(x) + g(x) > f(y) + g(y) 

Thus, f + g is strictly increasing as well. 

Now we could prove the same theorem by contradiction, but this makes the argument needlessly 
convoluted. 

Proof. We use proof by contradiction. Suppose that f +g is not strictly increasing. Then there must 
exist real numbers x and y such that x > y, but 

f(x) + g(x) ≤ f(y) + g(y) 

This inequality can only hold if either f(x) ≤ f(y) or g(x) ≤ g(y). Either way, we have a contra­
diction because both f and g were defined to be strictly increasing. Therefore, f + g must actually 
be strictly increasing. 
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1.4 Proof by Cases 

In Week1 Notes we verified by truth table that the two expressions A ∨ (A ∧ B) and A ∨ B were 
equivalent. Another way to prove this would be to reason by cases: 

A is T.	 Then A ∨ anything will have truth value T. Since both expressions are of this form, in this 
case, both have the same truth value, namely, T. 

A is F.	 Then A ∨ P will have the same truth value as P for any proposition, P . So the second 
expression has the same truth value as B. Similarly, the first expression has the same truth 
value as F ∧ B which also has the same value as B. So in this case, both expressions will 
have the same truth value, namely, the value of B. 

Here’s a slightly more interesting example. Let’s agree that given any two people, either they have 
met or not. If every pair of people in a group has met, we’ll call the group a club. If every pair of 
people in a group has not met, we’ll call it a group of strangers. 

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers. 

Proof. The proof is by case analysis1. Let x denote one of the six people. There are two cases: 

1. Among the remaining 5 people, at least 3 have met x. 

2. Among the remaining 5 people, at least 3 have not met x. 

We first argue that at least one of these two cases must hold.2 We’ll prove this by contradiction. 
Namely, suppose neither case holds. This means that at most 2 people in the group met x and at 
most 2 did not meet x. This leaves at least 1 of the remaining 5 people unaccounted for. That is, at 
least 1 of the people neither met x nor did not meet x, which contradicts our agreement that every 
pair has met or has not met. So at least one of these two cases must hold. 

Case 1: Suppose that at least 3 people that did meet x. 

This case splits into two subcases: 

Case 1.1: no pair among those people met each other. Then these people are a group 
of at least 3 strangers. So the Theorem holds in this subcase. 

Case 1.2: some pair among those people have met each other. Then that pair, together 
with x, form a club of 3 people. So the Theorem holds in this subcase. 

This implies that the Theorem holds in Case 1. 

Case 2: Suppose that there exist at least 3 people that did not meet x. 

This case also splits into two subcases: 

1Describing your approach at the outset helps orient the reader. 
2Part of a case analysis argument is showing that you’ve covered all the cases. Often this is trivial, because the two 

cases are of the form “P” and “not P”. However, the situation above is not so simple. 
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Case 2.1: every pair among those people met each other. Then these people are a club 
of at least 3 people. So the Theorem holds in this subcase. 

Case 2.2: some pair among those people have not met each other. Then that pair, 
together with x, form a group of at least 3 strangers. So the Theorem holds in this 
subcase. 

This implies that the Theorem also holds in Case 2, and therefore holds in all cases. 

2 Predicates 

A predicate is a proposition whose truth depends on the value of one or more variables. For 
example, 

“n is a perfect square” 

is a predicate whose truth depends on the value of n. The predicate is true for n = 4 since 4 is a 
prefect square, but false for n = 5 since 5 is not a perfect square. 

Like other propositions, predicates are often named with a letter. Furthermore, a function­like 
notation is used to denote a predicate supplied with specific variable values. For example, we 
might name our earlier predicate P : 

P (n) = “n is a perfect square” 

Now P (4) is true, and P (5) is false. 

This notation for predicates is confusingly similar to ordinary function notation. If P is a predicate, 
then P (n) is either true or false, depending on the value of n. On the other hand, if p is an ordinary 
function, like n2 + 1, then p(n) is a numerical quantity. Students frequently confuse these two. 

2.1 Quantifying a Predicate 

There are a couple kinds of assertion one commonly makes about a predicate: that it is sometimes 
true and that it is always true. For example, the predicate 

“x 2 ≥ 0” 

is always true when x is a real number. On the other hand, the predicate 

2“5x − 7 = 0” 

is only sometimes true; specifically, when x = ± 7/5. 

There are several ways to express the notions of “always true” and “sometimes true” in English. 
The table below gives some general formats on the left and specific examples using those formats 
on the right. You can expect to see such phrases hundreds of times in mathematical writing! 
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Always True 

For all n, P (n) is true. 
P (n) is true for every n. 

For all x, x2 ≥ 0. 
x2 ≥ 0 for every x. 

Sometimes True 

There exists an n such that P (n) is true. There exists an x such that 5x − 7 = 0. 
2P (n) is true for some n. 5x − 7 = 0 for some x. 
2P (n) is true for at least one n. 5x − 7 = 0 for at least one x. 

All these sentences quantify how often the predicate is true. Specifically, an assertion that a pred­
icate is always true is called a universal quantification, and an assertion that a predicate is some­
times true is an existential quantification. Sometimes the English sentences are unclear with re­
spect to quantification: 

“If you can solve any problem we come up with, then you get an A for the course.” 

The phrase “you can solve any problem we can come up with” could reasonably be interpreted as 
either a universal or existential quantification: 

“you can solve every problem we come up with” 

or maybe 

“you can solve at least one problem we come up with” 

In any case, notice that this quantified phrase appears inside a larger if­then statement. This is 
quite normal; quantified statements are themselves propositions and can be combined with and, 
or, implies, etc. just like any other proposition. 

2.2 More Cryptic Notation 

There are symbols to represent universal and existential quantification, just as there are symbols 
for “and” (∧ ), “implies” (−→ ), and so forth. In particular, to say that a predicate P (n) is true for 
all values of x in some set, D, one writes: 

∀ x ∈ D. P (n) 

The symbol ∀ is read “for all”, so this whole expression is read “for all x in D, P (x) is true”. To 
say that a predicate P (x) is true for at least one value of x in D, one writes: 

∃ x ∈ D. P (x) 

The backward­E is read “there exists”. So this expression would be read, “There exists an x in D 
such that P (x) is true. The symbols ∀ and ∃ are always followed by a variable and then a predicate, 
as in the two examples above. 

As an example, let Probs be the set of problems we come up with, Solves(x) be the predicate “You 
can solve problem x”, and A be the proposition, “You get an A for the course.” Then the two 
different interpretations of 
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If you can solve any problem we come up with, then you get an A for the course. 

can be written as follows: 
(∀ x ∈ Probs. Solves(x)) −→ A, 

or maybe 
(∃ x ∈ Probs. Solves(x)) −→ A. 

2.3 Mixing Quantifiers 

Many mathematical statements involve several quantifiers. For example, Goldbach’s Conjecture 
states: 

“Every even integer greater than 2 is the sum of two primes.” 

Let’s write this more verbosely to make the use of quantification clearer: 

For every even integer n greater than 2, there exist primes p and q such that n = p + q. 

Let Ev be the set of even integers greater than 2, and let Primes be the set of primes. Then we can 
write Goldbach’s Conjecture in logic notation as follows: 

∀ n ∈ Ev ∃ p ∈ Primes ∃ q ∈ Primes. n = p + q. � �� � � �� � 
for every even there exist primes 
integer n ≥ 2 p and q such that 

2.4 Order of Quantifiers 

Swapping the order of different kinds of quantifiers (existential or universal) changes the meaning 
of a proposition. For another example, let’s return to one of our initial, confusing statements: 

“Every American has a dream.” 

This sentence is ambiguous because the order of quantifiers is unclear. Let A be the set of Ameri­
cans, let D be the set of dreams, and define the predicate H(a, d) to be “American a has dream d.”. 
Now the sentence could mean there is a single dream that every American shares: 

∃ d ∈ D ∀ a ∈ A. H(a, d) 

Or it could mean that every American has their personal dream: 

∀ a ∈ A ∃ d ∈ D. H(a, d) 

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement that every even 
number ≥ 2 is the sum of the same two primes: 

∃ p ∈ Primes ∃ q ∈ Primes ∀ n ∈ Ev. n = p + q� �� � � �� � 
there exist primes for every even 
p and q such that integer n ≥ 2 
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2.4.1 Variables over One Domain 

When all the variables in a formula are understood to take values from the same nonempty set, 
D, it’s conventional to omit mention of D. For example, instead of ∀ x ∈ D ∃ y ∈ D. Q(x, y) we’d 
write ∀ x∃ y. Q(x, y). The unnamed nonempty set that x and y range over is called the domain of 
the formula. 

It’s easy to arrange for all the variables to range over one domain. For example, Goldbach’s Con­
jecture could be expressed with all variables ranging over the domain N as 

∀ n. n ∈ Ev −→ (∃ p∃ q. p ∈ Primes ∧ q ∈ primes ∧ n = p + q). 

2.5 Negating Quantifiers 

There is a simple relationship between the two kinds of quantifiers. The following two sentences 
mean the same thing: 

It is not the case that everyone likes to snowboard. There exists someone who does not 
like to snowboard. 

In terms of logic notation, this follows from a general property of predicate formulas: 

¬∀ x. P (x) is equivalent to ∃ x. ¬ P (x). 

Similarly, these sentences mean the same thing: 

There does not exist anyone who likes skiing over magma. Everyone dislikes skiing 
over magma. 

We can express the equivalence in logic notation this way: 

(¬∃ x. Q(x)) ←→ ∀ x. ¬ Q(x). (1) 

The general principle is that moving a “not” across a quantifier changes the kind of quantifier. 

2.6 Validity 

A propositional formula is called valid when it evaluates to Tno matter what truth values are 
assigned to the individual propositional variables. For example, the propositional version of De­
Morgan’s is that P ∧ (Q ∨ R) is equivalent to (P ∧ Q) ∨ (P ∧ R). This is the same as saying that 

[P ∧ (Q ∨ R)] ←→ [(P ∧ Q) ∨ (P ∧ R)] 

is valid. 

The same idea extends to predicate formulas, but to be valid, a formula now must evaluate to 
true no matter values its variables may take over any unspecified domain, and no matter what 
interpretation a predicate variable may be given. For example, we already observed that the rule 
for negating a quantier is captured by the valid assertion (1). 
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Another useful example of a valid assertion is 

.∃x∀y. P (x, y) −→ ∀y∃x. P (x, y)

We could prove this as follows: 

Proof. Let D be the domain for the variables and P0 be some binary predicate on D. We need to 
show that if ∃x∀y. P (x, y) holds under this interpretation, then so does ∀y∃x. P (x, y). 

So suppose ∃x∀y. P (x, y). So some element x0 ∈ D has the property that P0(x0, y) is true for all 
y ∈ D. So for every y ∈ D, there is some x ∈ D, namely x0, such that P0(x, y) is true. That is, 
∀y∃x. P (x, y) holds under this interpretation, as required. 

On the other hand, 
.∀y∃x. P (x, y) −→ ∃x∀y. P (x, y)

is not valid. We can prove this simply by describing an interpretation where the hypothesis 
∀y∃x. P (x, y) is true but the conclusion ∃x∀y. P (x, y) is not true. For example, let the domain 
be the integers and P (x, y) mean x > y. Then the hypothesis would be true because, given the 
value of y we could choose x to be y + 1, for example. But under this interpretation the conclu­
sion asserts that there is an integer that is bigger than all integers, which is certainly false. An 
interpetation like this which falsifies an assertion is called a counter model to the assertion. 

3 Mathematical Data Types 

We’ve been assuming that the concepts of sets, sequences and functions were already familiar 
ones, and we’ve mentioned them repeatedly. Now we’ll do a quick review of the definitions. 

Informally, a set is a bunch of objects, which are called the elements of the set. The elements of a 
set can be just about anything: numbers, points in space, or even other sets. The conventional way 
to write down a set is to list the elements inside curly­braces. For example, here are some sets: 

N = {0, 1, 2, 3, . . .} the natural numbers 
C = {red, blue, yellow} primary colors 
D = {Alex, Tippy, Shells, Shadow} dead pets 
P = {{a, b} , {a, c} , {b, c}} a set of sets 

The order of elements is not significant, so {x, y} and {y, x} are the same set written two different 
ways. Also, any object is, or is not, an element of a given set. It doesn’t make sense to think of 
an element appearing more than once in a set. So writing {x, x} is just indicating the same thing 
twice, namely, that x is in the set. In particular, {x, x} = {x}. 

The expression e ∈ S asserts that e is an element of set S. For example, 7 ∈ N and blue ∈ C, but 
Tailspin �∈ D yet. 

Sets are simple, flexible, and everywhere. You’ll find at least one set mentioned on almost every 
page in these notes. 
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3.1 Some Popular Sets 

Mathematicians have devised special symbols to represent some common sets. 

symbol set	 elements 
∅ the empty set none

N natural numbers {0, 1, 2, 3, . . .}

Z integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}


1 5Q rational numbers 2 , − 3 , 16, etc. 
R real numbers π, e, −9, etc. 

19C complex numbers i, 2 , 
√

2− 2i, etc. 

A superscript + restricts a set to its positive elements; for example, R+ denotes the set of positive 
real numbers. Similarly, R− denotes the set of negative reals. 

3.2 Comparing and Combining Sets 

The expression S ⊆ T indicates that set S is a subset of set T , which means that every element of 
S is also an element of T . For example, N ⊆ Z (every natural number is an integer) and Q ⊆ R 
(every rational number is a real number), but C �⊆ Z (not every complex number is an integer). 

As a memory trick, notice that the ⊆ points to the smaller set, just like a ≤ sign points to the 
smaller number. Actually, this connection goes a little further: there is a symbol ⊂ analogous to 
<. Thus, S ⊂ T means that S is a subset of T , but the two are not equal. So for every set A, A ⊆ A, 
but A �⊂ A. 

There are several ways to combine sets. Let’s define a couple for use in examples: 

X = {1, 2, 3}
Y = {2, 3, 4} 

•	 The union of sets X and Y (denoted X ∪ Y ) contains all elements appearing in X or Y or 
both. Thus, X ∪ Y = {1, 2, 3, 4}. 

•	 The intersection of X and Y (denoted X ∩ Y ) consists of all elements that appear in both X 
and Y . So X ∩ Y = {2, 3}. 

•	 The difference of X and Y (denoted X − Y ) consists of all elements that are in X , but not in 
Y . Therefore, X − Y = {1} and Y − X = {4}. 

3.2.1 Complement of A Set 

Sometimes we are focussed on a particular domain, D. Then for any subset, A, of D, we define A 
to be the set of all elements of D not in A. That is, A ::= D− A. The set A is called the complement 
of A. 

For example, when the domain we’re working with is the real numbers, the complement of the 
positive real numbers is the set of negative real numbers together with zero. That is, 

R+ = R− ∪ {0} . 
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3.2.2 Power Set 

The collection of all the subsets of a set, A, is called the powerset, P(A), of A. So B ∈ P(A) iff 
B ⊆ A. For example, the elements of P({1, 2}) are ∅, {1} , {2} and {1, 2}. 

More generally, if A has n elements, then there are 2n sets in P(A). For this reason, some authors 
use the notation 2A instead of P(A). 

3.3 Sequences 

Sets provide one way to group a collection of objects. Another way is in a sequence, which is a 
list of objects called terms or components. Short sequences are commonly described by listing the 
elements between parentheses; for example, (a, b, c) is a sequence with three terms. 

While both sets and sequences perform a gathering role, there are several differences. 

•	 The elements of a set are required to be distinct, but terms in a sequence can be the same. 
Thus, (a, b, a) is a valid sequence, but {a, b, a} is not a valid set. 

•	 The terms in a sequence have a specified order, but the elements of a set do not. For example, 
(a, b, c) and (a, c, b) are different sequences, but {a, b, c} and {a, c, b} are the same set. 

•	 The empty set is usually denoted ∅, and the empty sequence is typically λ. 

The product operation is one link between sets and sequences. A product of sets, S1×S2×· · ·×Sn, 
is a new set consisting of all sequences where the first component is drawn from S1, the second 
from S2, and so forth. For example, N ×{a, b} is the set of all pairs whose first element is a natural 
number and whose second element is an a or a b: 

N × {a, b} = {(0, a), (0, b), (1, a), (1, b), (2, a), (2, b), . . . } 

A product of n copies of a set S is denoted Sn. For example, {0, 1} 3 is the set of all 3­bit sequences: 

{0, 1} 3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} 

3.4 Set Builder Notation 

One specialized, but important use of predicates is in set builder notation. We’ll often want to 
talk about sets that can not be described very well by listing the elements explicitly or by taking 
unions, intersections, etc. of easily­described sets. Set builder notation often comes to the rescue. 
The idea is to define a set using a predicate; in particular, the set consists of all values that make the 
predicate true. Here are some examples of set builder notation: 

A = {n ∈ N n is a prime and n = 4k + 1 for some integer k}� 
| 

3 
�


B = x ∈ R x − 3x + 1 > 0


C = a + bi ∈ C a 2 + 2b2 ≤ 1| 

The set A consists of all natural numbers n for which the predicate 
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“n is a prime and n = 4k + 1 for some integer k” 

is true. Thus, the smallest elements of A are: 

5, 13, 17, 29, 37, 41, 53, 57, 61, 73, . . . 

Trying to indicate the set A by listing these first few elements wouldn’t work very well; even after 
ten terms, the pattern is not obvious! Similarly, the set B consists of all real numbers x for which 
the predicate 

3 x − 3x + 1 > 0 

is true. In this case, an explicit description of the set B in terms of intervals would require solving 
a cubic equation. Finally, set C consists of all complex numbers a + bi such that: 

a 2 + 2b2 ≤ 1 

This is an oval­shaped region around the origin in the complex plane. 

3.5 Functions 

A function assigns an element of one set, called the domain, to elements of another set, called the 
codomain. The notation 

f : A B→ 

indicates that f is a function with domain, A, and codomain, B. The familiar notation “f(a) = b” 
indicates that f assigns the element b ∈ B to a. Here b would be called the value of f at argument a. 

Functions are often defined by formulas as in: 

1 
f1(x) ::= 

2x

where x is a real­valued variable, or 

f2(y, z) ::= y10yz 

where y and z range over binary strings, or 

f3(x, n) ::= the pair (n, x) 

where n ranges over the natural numbers. 

Finite functions can be specified by a table that shows the value of the function at each element of 
the domain, as in the function f4(P,Q) where P and Q are propositional variables: 

P Q f4(P,Q) 
T T T 
T F F 
F T T 
F F T 

Notice that f4 could also have been described by a formula: f4(P,Q) = [P −→ Q]. 
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A function might also be defined by a procedure for computing its value at any element of its 
domain, or by some other kind of specification. For example, define f5(y) to be the length of a left 
to right search of the bits in the binary string y until a 1 appears, so 

f5(0010) = 3, 

f5(100) = 1, 

f5(0000) is undefined. 

There are few properties of functions that will be useful when we take up the topic of counting 
because they imply certain relations between the sizes of domains and codomains. We say a 
function f : A B is:→ 

•	 total if every element of A is assigned to some element of B; otherwise, f is called a partial 
function, 

•	 surjective if every element of B is mapped to at least once, 

•	 injective if every element of B is mapped to at most once, and 

•	 bijective if f is total, surjective, and injective. In particular, each element of B is mapped to 
exactly once. 

The names “surjective” and “injective” are hopelessly unmemorable and nondescriptive. Some 
authors use the term onto for surjective and one­to­one for injective, which are shorter but arguably 
no more memorable. 

We can explain all these properties in terms of a diagram where all the elements of the domain, 
A, appear in one column (a very long one if A is infinite) and all the elements of the codomain, B, 
appear in another column, and we draw an arrow from a point a in the first column to a point b in 
the second column when f(a) = b. For example, here are diagrams for two functions: 

A B A B 

-a 1	 a - 1 

b 2	 b 2 
�	 �3	 3

PPPPPP	

PPPPPP
� �

c � q 3 c Q �
� q 3� �3	 Q

PPPPPP
� �	 � 

d � � q 4	 d � Q
Q 4� 

� QQe � s 5 

Here is what the definitions say about such pictures: 

•	 “f is a function” means that every point in the domain column, A, has at most one arrow out 
of it. (If more than one arrow came out of any point in the first column, then f would be a 
relation, but not a function. We’ll take up the topic of relations in a couple of weeks.) 
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•	 “f is total” means that every point if the A column has at least one arrow out of it, which really 
means it has exactly one arrow out of it since f is a function. 

•	 “f is surjective” means that every point in the codomain column, B, has at least one arrow into 
it. 

•	 “f is injective” means that every point in the codomain column, B, has at most one arrow into 
it. 

•	 “f is bijective” means that every point in the A column has exactly one arrow out of it, and 
every point in the B column has exactly one arrow into it. 

So in the diagrams above, the function on the left is total and surjective (every element in the A 
column has an arrow out, and every element in the B column has at least one arrow in), but not 
injective (element 3 has two arrows going into it). The function on the right is total and injective 
(every element in the A column has an arrow out, and every element in the B column has at most 
one arrow in), but not surjective (element 4 has no arrow going into it). 

Everything about a function is captured by three sets: it domain, its codomain, and the set 

{(a, b) f(a) = b}| 

which is called the graph of f . Notice that the graph of f simply describes where the arrows go in 
a diagram for f . 

The graph of f does not determine by itself whether f is total or surjective; we also need to know 
what the domain is to determine if f is total, and we need to know the codomain to tell if it’s 
surjective. For example, a function defined by the formula f(x) ::= 1/x2, is total if its domain is 
R+ but partial if its domain is some set of real numbers including 0. It is bijective if its domain and 
codomain are both R+, but neither injective nor surjective if its domain and codomain are both R. 

Surjections and injections imply certain size relationships between domains and codomains. If A 
is a finite set, we let |A be its size, that is, the number of element in A.| 

Lemma (Mapping Rule). 

•	 If f : A → B is surjective, then |A B|.| ≥ |

•	 If f : A → B is total and injective, then |A B|.| ≤ |

•	 If f : A → B is bijective, then |A = B .| | |

It’s often useful to find the set of values a function takes when applied to the elements in a set of 
arguments. So if f : A → B, and A� ⊆ A, we define 

f̂(A�) ::= 
� 
b ∈ B f(a�) = b for some a� ∈ A� .| 

For example, if we let [r, s] denote the interval from r to s on the real line, then f̂1([1, 2]) = [1/4, 1]. 

For another example, let’s take the “search for a 1” function, f5. If we let X be the set of binary 
words which start with an even number of 0’s followed by a 1, then f̂5(X) would be the even 
natural numbers. 
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Applying f̂ to a set, A�, of arguments is referred to as “applying f pointwise to A�.” The distinction 
between f and f̂ is kind of picky, and it’s common practice to omit the hat on f̂ and just write 
f . We’ll do this too, since it’s usually easy to figure out whether f is being applied to a single 
argument or pointwise to a set of them. But technically, f and f̂ are quite different functions: for 
example, the domain of f̂ is not A, but the set of subsets of A, that is, P (A), and the codomain of 
f̂ is P(B). 

The set of values that arise from applying f to all possible arguments is called the range of f . That 
is 

range (f) ::= f(domain (f)). 

Some authors refer to the codomain as the range of a function, but the distinction between the two 
is important. The range and codomain of f are the same only when f is surjective. 

4 Does All This Really Work? 

So this is where mainstream mathematics stands today: there is a handful of axioms from which 
everything else in mathematics can be logically derived. This sounds like a rosy situation, but 
there are several dark clouds, suggesting that the essence of truth in mathematics is not completely 
resolved. 

•	 The ZFC axioms weren’t etched in stone by God. Instead, they were mostly made up by 
some guy named Zermelo. Probably some days he forgot his house keys. 

•	 No one knows whether the ZFC axioms are logically consistent; there is some possibility that 
one person might prove a proposition P and another might prove the proposition ¬P . Then 
Math would be broken. This sounds like a crazy situation, but it has happened before. At the 
beginning of the 20th century, the logician Gotlob Frege made an initial attempt to axioma­
tize set theory using a few very plausible axioms. Several mathematicians— most famously 
Bertrand Russell3— discovered that Frege’s axioms actually were self­contradictory! 

•	 While the ZFC axioms largely generate the mathematics everyone wants— where 3 + 3 = 6 
and other basic facts are true— they also imply some disturbing conclusions. For example, 
the Banach­Tarski Theorem says that a ball can be divided into six pieces and then the pieces 
can be rearranged to give two balls, each the same size as the original! 

•	 In the 1930’s, G ̈odel proved that, assuming the ZFC axioms are consistent, then they are not 
complete: that is, there exist propositions that are true, but do not logically follow from the 
axioms. As a matter of fact, the proposition that ZFC is consistent (which is not too hard to 
express as a formula about sets) is an example of a true proposition that cannot be proved. 

There seems to be no way out of this disturbing situation; simply adding more axioms does 
not eliminate the problem. 

These problems will not trouble us in 6.042, but they are interesting to think about! 

3Bertrand Russell was a Mathematician/Logician at Oxford University at the turn of the Twentieth Century. 
He reported that when he felt too old to do Mathematics, he began to study and write about Philosophy, and when 

he was no longer smart enough to do Philosophy, he began writing about Politics. He was jailed as a conscientious 
objector during World War I. He won two Nobel Prizes— one Literature Prize and one Peace Prize. 
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Russell’s Paradox


Reasoning naively about sets quickly leads to the following 
contradiction— known as Russell’s Paradox: 

Let S be a variable ranging over all sets, and define 

W ::= {S | S �∈ S} . 

So by definition,

S ∈ W iff S �∈ S,


for every set S. In particular, we can let S be W , and obtain 
the contradictory result that 

W ∈ W iff W �∈ W. 

This paradox revealed a fatal flaw in Frege’s initial effort to axiom­
atize set theory. This was an astonishing blow to efforts to provide an 
axiomatic foundation for Mathematics. 

But a way out was clear at the time: we cannot assume that W is a 
set. So the step in the proof where we let S be W is invalid, because S 
ranges over sets, and W is not a set. 

But denying that W is a set means we must reject the axiom that 
every mathematically well­defined collection of elements is actually a 
set. 

The problem faced by Logicians was how to axiomatize rules deter­
mining which well­defined collections are sets. Russell and his col­
league Whitehead immediately went to work on this problem and 
spent a dozen years developing a huge new axiom system in an even 
huger monograph called Principia Mathematica. 

The modern ZFC axioms for set theory are much simpler than the 
Russell/Whitehead system and are close to Frege’s original axioms. 
They specify that sets must be built up from “simpler” sets in certain 
standard ways. In particular, no set is ever a member of itself. So the 
modern resolution of Russell’s paradox goes as follows: since S �∈ S 
for all sets S, it follows that W , defined above, contains every set. So 
W can’t be a set or it would be a member of itself. 

These issues rarely come up in mainstream Mathematics. And they 
don’t come up at all in Computer Science, where the focus is generally 
on “countable,” and often just finite, sets. In practice, only Logicians 
and Set Theorists have to worry about collections that are too big to be 
sets. 
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