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Binary Relations 

1 Are We Related? 

Questions about how two things are related are bound to come up whatever you’re doing. For 
two people, you might ask if they’re related (as family), if they know each other, if one is older 
than the other, if they’re the same sex, race, age,. . . . For two countries, you might ask if they trade 
with each other, if the first has a higher per capita income, if a visa is required to visit one from the 
other,. . . . In Mathematics or Computer Science, if two variables are assigned values, we’re used to 
asking if the values are the same, if the first value is bigger than the second (assuming both values 
are real numbers), if the values have a common divisor (assuming both values are integers), if 
the first value is a member of the second (assuming the second value is a set), if the first value is 
the domain of the second (assuming the first is a set and the second is a function). These are all 
examples of binary relations. 

The concept of binary relation is as fundamental mathematically as the concept of function or set. 
In these Notes we’ll define some basic terminology for binary relations, and then we’ll focus on 
two especially important kinds of binary relations: equivalence relations and partial orders. 

1.1 Relations and Functions 

Here’s the official definition: 

Definition 1.1. A binary relation, R, consists of a set, A, called the domain of R, a set, B, called the 
codomain of R, and a subset of A× B called the graph of R. 

For example, we can define an “is teaching relation” for Fall ’05 at MIT to have domain equal 
to the names of all the teaching staff (faculty, T.A.’s, etc.) and codomain equal to all the subject 
numbers in the current catalogue. Its graph would look like 

{(Albert R. Meyer, 6.042), (David Shin, 18.062), (Sayan Mitra, 6.04), 
(Albert R. Meyer, 18.062), (Charles E. Leiserson, 6.046), 
(Donald Sadoway, 3.091), . . . } 

Notice that Definition 1.1 is exactly the same as the definition of a function, except that it doesn’t 
require the functional condition that, for each domain element, a, there is at most one pair in the 
graph whose first coordinate is a. So a function is a special case of a binary relation. 

A relation whose domain is A and codomain is B is said to be “between A and B”, or “from A to 
B.” When the domain and codomain are the same set, A, we simply say the relation is “on A.” It’s 
common to use infix notation “aR b” to mean that the pair (a, b) is in the graph of R. 
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1.2 Images and Inverse Images 

Before we go any further, it’s worth introducing some notation that we’ll get a lot of mileage out 
of. If R is a binary relation from A to B, and C is any set, define 

CR ::= cRb for some c ∈ C} ,{b ∈ B |
RC ::= aRc for some c ∈ C} .{a ∈ A | 

The set CR is called the image of C under R. Notice that if R happened to be a function, the 
notation R(C) from Week 3 Notes would also describe the image of C under R. 

The set RC is called the inverse image of C under R. Notice the clash in notation when R happens 
to be a function: R(C) = CR, not RC. Sorry about that. 

1.3 Surjective and like that 

A relation with the property that every codomain element is related to some domain element is 
called a surjective (or onto) relation —again, the same definition as for functions. More concisely, 
a relation, R, between A and B is surjective iff AR = B. Likewise, a relation with the property 
that every domain element is related to some codomain element is called a total relation; more 
concisely, R is total iff A = RB. 

The Fall ’05 “is teaching relation” relation above is not surjective since none of the Spring term­
only subjects are being taught. It’s not total either, since not all the eligible teaching staff are 
actually teaching this term. 

2 Equivalence Relations 

An equivalence relation on a set of objects comes about when all we care about is some property— 
say the size, shape, or color—of the objects rather than the objects themselves. We say two objects 
with the same property value are “equivalent.” Of course this happens all the time, which is why 
equivalence relations appear everywhere. 

For example, two triangles in the plane are congruent iff they have the same three lengths of sides. 
They are similar iff they have the same three sizes of angles. 

Representation­equivalence comes up in Computer Science as the relation between representations of 
the same abstract data type. For example, the simplest way of representing a finite set of numbers 
is as an unsorted list. The two lists (3 4 ­2 177 5) and (177 ­2 3 5 4) are “representation­
equivalent” because they represent the same set. 

2.1 Equivalence by Function 

Abstractly, we assume there is some function that extracts the angles, size, color, or whatever 
other property of elements we’re interested in. Two elements would be considered equivalent iff 
the function extracts the same value for each. 
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For example, if fc is the function mapping a triangle to the lengths its sides, then fc determines 
the congruence relation. If fs is the function mapping a triangle to the sizes of its angles, then fs 

determines the similarity relation. 

Definition 2.1. Given any total function, f , with domain A, define the binary relation ≡f on A by 
the rule: 

a ≡f b iff f(a) = f(b) (1) 

for all a, b ∈ A. 

A binary relation is an equivalence relation iff it equals ≡f for some f . 

So congruence of triangles is an equivalence relation because it is ≡fc , as is triangle similarity 
because it is ≡fs . Likewise representation­equivalence on number lists is an equivalence relation 
because it is ≡fr , where fr maps a representation to the set it represents. 

Quick exercise: Show that the equality relation on elements of a set, A, is actually an equivalence 
relation according to Definition 2.1 by describing an I : A → A such that equality is ≡I . 

Congruence modulo n is another equivalence that we will explore in detail when we introduce 
elementary number theory and its role in modern cryptography. Integers k and m are congruent 
modulo an integer n > 1, written 

m ≡ k mod n, 

iff m and k have the same remainder on division by n. So congruence modulo n is the equiv­
alence relation determined by the remainder­on­division­by­n function. This relation is called a 
congruence because adding or multiplying equivalent integers yields equivalent integers. That is, 

Lemma 2.2. If m1 ≡ k1 mod n and m2 ≡ k2 mod n, then 

m1 + m2 ≡ k1 + k2 mod n, and 

m1m2 ≡ k1k2 mod n. 

We leave the proof of Lemma 2.2 as an easy exercise for the reader. 

2.2 Partitions 

Cutting up a set into a bunch of pieces is called partitioning the set. The pieces are called blocks 
of the partition (you’d think the pieces would be called the parts of the partition, but no). More 
formally, 

Definition 2.3. A partition of a set, A, is a collection, A, of nonempty sets called the blocks of the 
partition such that 

� 
1. A = B∈A B, and 

2. if B1 = B2 are blocks of A, then B1 and B2 are disjoint1. 

1Two sets are said to be disjoint when they have no elements in common, that is, their intersection is empty. 
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Example 2.4. We can partition the integers into four blocks according to whether their remainder 
on division by 4 is 0, 1, 2, or 3: 

{0, 4,−4, 8,−8, 12, . . . }
{1,−3, 5,−7, 9,−11, . . . }
{2,−2, 6,−6, 10,−10, . . . }
{3,−1, 7,−5, 11,−9, . . . } . 

Example 2.5. We can partition the real line into blocks by cutting it at integer points. Namely, the 
nth block, Bn, would be {r ∈ R n ≤ r < n + 1}. So Bn could also be described as the set of real |
numbers r that are ≡f to n, where f is the floor function: f(r) = �r�, the largest integer ≤ r. 

Example 2.6. We can partition the pixels in an image according to their color (so there will be 
somewhere between 2 and several millions blocks depending on whether the image is pure black 
and white or is “true color.” 

The relation of being in the same block of a partition is an equivalence relation. This is the equiva­
lence relation defined by the function that maps each element to the block it’s in. More precisely, 
suppose A partitions a set, A, and define [a] be the block with a in it. Note that every a ∈ AA
belongs to some block by Definition 2.3.1, and there is only one such block by Definition 2.3.2, 
so [a]A is unambigously defined for each element, a. So being­in­the­same­block is ≡blk, where 
blk(a) ::= [a]A. 

Conversely, an equivalence relation, ≡f , given by a total function, f , on a set, A, determines a 
partition of A, where the block containing a ∈ A is {a� f(a�) = f(a)}.| 

For example, there are four equivalence classes of integers under congruence mod 4. These are 
exactly the blocks of the partition based on remainder­by­4 of Example 2.4. 

So we can extract an equivalence relation from any partition, and conversely, we can define a par­
tition determined by any equivalence relation. In fact, it’s not hard to see that if you extract an 
equivalence relation from a partition and then use the partition to determine an equivalence rela­
tion, you get back to the partition you started with. Likewise, if you take the parition determined 
by an equivalence relation and extract a partition from it, you also get back to where you started. 
So partitions and equivalence relations are really interchangeable ways of talking about the same 
thing. 

To summarize: the hallmark of equivalence relations is sameness of some property of objects. An 
equivalence relation hides irrelevant differences between objects, and lets us lump together into 
blocks all the objects that are the “same.” Conversely, equivalence is captured by the property of 
being in the same block. 

2.3 Properties of Equivalence Relations 

Equivalence relations have some obvious properties that occur so frequently they merit names: 

Definition 2.7. A binary relation R on a set A is: 

•	 reflexive iff for every a ∈ A,

aR a,
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• symmetric iff for every a, a� ∈ A, 

aR a� implies a� R a, 

• transitive iff for every a, b, c ∈ A, 

[aR b and b R c] implies aR c. 

Example 2.8. Let R1 be the less­than relation, <, on the natural numbers. Then R1 is transitive 
(since [j < k and k < l] implies j < l). It is not reflexive (since 0 < 0 is false) and not symmetric 
(since 0 < 1 but not 1 < 0). 

Example 2.9. We know that if A,B, C are sets and A ⊂ B and B ⊂ C, then A ⊂ C. That is, the 
proper subset relation, ⊂ , is transitive. It is not reflexive (since a set is never a proper subset of 
itself) and not symmetric (for example, the empty set is a subset of any nonempty set, but not vice 
versa). 

Example 2.10. Let R2 be the “implies” relation on the set of propositional formulas, that is, define 
p R2 q iff p −→ q is propositionally valid. Now R2 is reflexive, since p −→ p is valid. It is also 
transitive, since if p −→ q and q −→ r are valid, then p −→ r is valid. However, it isn’t symmetric, 
since, for example, false −→ true valid, but true −→ false is not. 

Example 2.11. Let R3 be the relation on sets, C,D of natural numbers such that C R3 D iff C ∩ D is 
finite. Then R3 is symmetric, but not reflexive (for example N R N is not true). 

Quick exercise: Explain why R3 is not transitive. 

Example 2.12. Let R4 be the relation on complex numbers such that aR4 b iff the distance from a 
to b in the complex plane is ≤ 1, that is, a− b ≤ 1. Then R4 is reflexive and symmetric, but not | |
transitive (because 1 R4 2 and 2 R4 3, but not 1 R4 3). 

Notice that the equality relation on a set A is reflexive, symmetric, and transitive. We won’t prove 
this—it’s an axiom. These properties of equality directly imply the corresponding properties for 
any equivalence relation: 

Lemma 2.13. Every equivalence relation is reflexive, symmetric, and transitive. 

Proof. Consider any equivalence relation, ≡ f , determined by some function, f with domain A. 

Since f(a) = f(a), it follows trivially that ≡ f is reflexive. LIkewise, if f(a) = f(a�), then f(a�) = 
f(a), which implies that ≡ f is symmetric. Finally, if f(a) = f(b) and f(b) = f(c), than obviously 
f(a) = f(c), which implies that ≡ f is transitive. 

2.4 Equivalence by Axioms 

The properties of reflexivity, symmetry, and transitivity actually provide an elegant axiomatic 
characterization of equivalence relations. (In fact, most authors define equivalence relations using 
these axiomas, but we think our approach makes more sense.) 

Theorem 2.14. Any relation on a set that is reflexive, symmetric and transitive is an equivalence relation 
on the set. 
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Proof. Suppose R is a relation on a set, A, and R is reflexive, symmetric, and transitive. Define the 
function, f , with domain, A, by the rule 

f(a) ::= {a}R. 

We will prove that R is ≡f , and hence R is an equivalence relation. That is, we have to show that 

aR b iff {a}R = b}R (2){

for all a, b ∈ A.


First we prove (2) from right to left. Namely, suppose {a}R = b}R. Since R is reflexive, we have
{
b ∈ {b}R. This means b ∈ {a}R = 
the proof from right to left. 

{b}R. So aR b holds by definition of {a}R, which completes 

To prove the converse, suppose 
aR b. (3) 

We’ll first prove that 
{b}R ⊆ {a}R. (4) 

To do this, let c be an element of { we must show that c ∈ {a}R. But by definition of {
b}R; b}R, 
we know that 

b R c. (5) 

But (3) and (5) together imply aR c because R is transitive. So c ∈ {a}R by definition of {a}R. 
This proves (4). 

Finally, (3) implies b R a, because R is symmetric. So the same argument used to prove (4), we can 
conclude that 

.b}R{a}R ⊆ {
But this together with (4) implies that {a}R = b}R, completing the proof of (2) from left to {
right. 

We have highlighted where each of the three properties of equivalence relations were used in this 
proof. Verifying that a proof uses all available assumptions is a good “sanity check”—if one of 
the assumed properties was not used in the proof, then you have either made a mistake or proven 
a stronger theorem than you thought. For example, if you didn’t use reflexivity anywhere in 
the proof of Theorem 2.14, you would have proved that any symmetric, transitive relation is an 
equivalence relation, which is false. So a proof that failed to use reflexivity must be mistaken. 

These axioms are helpful in at least a couple of ways. First, there are situations where it’s hard to 
find a function, f , that characterizes an equivalence relation. Theorem 2.14 lets us show that the 
relation is an equivalence by verifying that the relation is reflexive, symmetric, and transitive. 

Problem 1. Define two positions of the pieces in the game of chess to be mutually reachable if it 
is possible to start at either one and get to the other one by a sequence of legal chess moves. We 
don’t see any useful way to describe a function, f , such that mutual reachability equals ≡f . Prove 
that mutual reachability is an equivalence relation anyway. 

Second, to prove that a relation is not an equivalence just from the definition, we would have to 
show that the relation is not equal to ≡f for any possible function, f . Off hand, this requires a 
daunting analysis in order to rule out all possible functions. But Theorem 2.14 implies we can 
always show that a relation is not an equivalence simply by finding two or three elements of the 
domain where the axioms fail to hold. 
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3 Partial Orders 

Partial orders are another class of binary relations that are particularly important in Computer Sci­
ence, with applications that include task scheduling, database concurrency control, and proving 
that computations terminate. 

A general example of a partial order is the subset relation, ⊂, on sets. In fact, we will define partial 
orders via the subset relation in much the same way we defined equivalence relations. Namely, 
for any element, a, we think of a function, g, such that g(a) is the set of properties that a has. Then 
we relate different elements according to how their properties compare. All partial orders will 
arise in this way. 

3.1 Partial Order by Function 

For partial orders we’ll often use the symbols � or � because they resemble the symbols used 
for subset and less­or­equal, which are the most common partial orders. (General relations are 
usually denoted by a letter like R instead of a cryptic squiggly symbol, so � is kind of like Prince.) 

Definition 3.1. Given any total function, g, from a set, A, to a collection of sets, define the binary 
relation �g on A by the rule: 

a �g b iff g(a) ⊂ g(b) (6) 

for a, b ∈ A. A binary relation, R, on a set, A, is a partial order iff there is a g such that R agrees with 
�g for every pair of distinct elements. That is, 

aR b iff a �g b (7) 

for all a = b ∈ A. 

An immediate consequence of Definition 3.1 is that the subset relation itself is a partial order. 
Specifically, if A is any collection of sets, then the proper subset relation, ⊂, is a partial order on 
A. To prove this, we let IA be the identity function on A. Then �IA 

is the same relation as ⊂, and 
so trivially satisfies the condition (6) on R. The contained­in­or­equal subset relation, ⊆, is also a 
partial order, since it agrees with �IA 

for a = b. 

The most familiar examples of partial orders are “less than” relations, for example, the relation, 
<, on real numbers. To see that < is indeed a partial order, just define h(r) ::= {q ∈ Q q < r}.|
Since there is a rational number between any two real numbers (to see why, think about where 
their decimal expansions first differ), it follows that < is simply �h. Likewise, the relation, ≤, is a 
partial order because it agrees with �h for all pairs of distinct real numbers. 

Our general definition of partial order leaves unspecified whether elements are related to them­
selves. 

Definition 3.2. A partial order is called weak iff it is reflexive. 

So, for example, the relation ≤ on the real numbers, and the relation ⊆ on sets, are weak partial 
orders. 

Definition 3.3. A binary relation, R, on a set A, is irreflexive iff for all a ∈ A it is not true that aR a. 

A partial order is strict iff it is irreflexive. 
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The <­relation on the reals and the proper subset relation, ⊂, are strict partial orders. In general,

a partial order may be neither weak nor strict; this happens when some elements are related to

themselves and others are not.


Two more examples of partial orders are worth mentioning:


Example 3.4. Let A be some family of sets and define aRb iff a ⊃ b. Then R is a strict partial order.


Proof. Define p(a) ::= a, where a is the complement of a, and note that


[aR b] iff [a ⊃ b] iff [a ⊂ b] iff [p(a) ⊂ p(b)]. 

So R equals �p and so is a partial order. It is strict since no set is a proper subset of itself. 

For integers, m,n we write m | n to mean that m divides n, namely, there is an integer, k, such that

n = km.


Example 3.5. The divides relation is a weak partial order on the natural numbers.


Proof. Let v(n) ::= the set of natural numbers that divide n. Then divides is �v, and so is a partial

order. Since m | m, it is a weak partial order.


3.2 Total Orders 

The familiar order relations on numbers have an important additional property: given any two 
numbers, one will be bigger than the other. Partial orders with this property are said to be total 
orders2: 

Definition 3.6. Let R be a binary relation on a set, A, and let a, b be elements of A. Then a and b 
are comparable with respect to R iff (aR b or b R a). A partial order under which every two distinct 
elements are comparable is called a total order. 

So < and ≤ are total orders on R. On the other hand, the subset relation is generally not total: any 
two distinct finite sets of the same size will be incomparable under ⊆. 

3.3 Properties of Partial Orders 

We’ve already observed that the subset relation is transitive, which implies that any relation, �g, 
is transitive. So by Definiton 7: 

Lemma 3.7. Every partial order is transitive. 

One additional property of the subset relation is enough to completely characterize partial orders. 

Definition 3.8. A binary relation, R, on a set, A, is antisymmetric if 

aR b implies ¬(b R a) 

for all a = b ∈ A. 
2“Total” is an overloaded term when talking about partial orders: being a total order is a much stronger condition 

that being a partial order that is a total relation. For example, any weak partial order such as ⊆ is a total relation. 
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Lemma 3.9. Every partial order is antisymmetric. 

Proof. Suppose R is a partial order on A. So there is a set­valued total function, g, with domain A 
and R agrees with �g on pairs of distinct elements in A. 

We want to show that aRb and bRa cannot both hold for elements a =� b. But if they did both hold, 
then (6) would imply that g(a) and g(b) are proper subsets of each other, which is impossible. 

3.4 Partial Orders by Axioms 

The properties of transitivity and antisymmetry provide an axiomatic characterization of partial 
orders: 

Theorem 3.10. A binary relation is a partial order iff it is transitive and antisymmetric. 

Proof. Let R be a binary relation on a set A. Then the preceding two Lemmas imply the left to 
right direction of Theorem 3.10. 

To prove the Theorem in the right to left direction, assume R is transitive and antisymmetric. 
Define 

g(a) ::= R { a} . (8)a} ∪ {
We claim that R is a partial because it agrees with �g on distinct elements of A. That is, if a = b ∈ A, 
then 

a R b iff g(a) ⊂ g(b). (9) 

To prove (9) from right to left, note that 

g(a) ⊂ g(b) implies a ∈ g(b) because a ∈ g(a) by (8), 
implies 

implies 

implies 

a ∈ R {b} ∪ {b} 

a ∈ R {b}
a R b 

by def. of g(b), 
since a �= b, 

by def of R {b}. 

The proof of (9) from left to right also follows routinely from the definitions by a somewhat longer, 
but not specially informative argument, which we omit. 

In the literature, partial orders are usually defined axiomatically as in Theorem 3.10, and then the 
possibility of representing partial orders as �g is proved as a theorem. Since the two characteriza­
tions imply each other, it is a matter of taste which one to use as the definition. 

Strict partial orders have an even simpler axiomatic characterization. 

Theorem 3.11. A binary relation is a strict partial order iff it is transitive and irreflexive. 

Problem 2. Prove Theorem 3.11. Hint: Show that transitivity and irreflexivity imply antisymme­
try. 

For weak partial orders, we often write an ordering­style symbol like � instead of a letter symbol 
like R. Likewise, we generally use � to indicate a strict partial order. We also write b � a to mean 
a � b and b � a to mean a � b. 
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3.5 Products and Restrictions of Relations 

Product and restriction are two ways of constructing new relations from old ones that will be 
useful. 

3.5.1 Products 

The product, R1 × R2, of relations R1 and R2 is defined to be the relation with 

domain (R1 × R2) ::= domain (R1)× domain (R2) , 

codomain (R1 × R2) ::= codomain (R1)× codomain (R2) , 

(a1, a2) (R1 × R2) (b1, b2) iff [a1 R1 b1 and a2 R2 b2]. 

Example 3.12. Define a relation, Y , on age­height pairs of being younger and shorter. This is the 
relation on the set of pairs (y, h) where y is a natural number ≤ 2400 which we interpret as an age 
in months, and h is a natural number ≤ 120 describing height in inches. We define Y by the rule 

(y1, h1) Y (y2, h2) iff y1 ≤ y2 ∧ h1 ≤ h2. 

That is, Y is the product of the ≤­relation on ages and the ≤­relation on heights. 

Products preserve several of the relational properties we have considered. Namely, it’s not hard 
to verify that if R1 and R2 are both transitive, then so is R1 × R2. The same holds for symmetry, 
reflexivity, and antisymmetry. This implies that if R1 and R2 are both partial orders, then so is 
R1 × R2. Likewise for being an equivalence relation. 

Quick Exercise: Verify that if either of R1 or R2 is irreflexive, then so is R1 × R2. 

On the other hand, the property of being a total order is not preserved. For example, the age­
height relation Y is the product of two total orders, but it is not total. For example, the age 240 
months, height 68 inches pair, (240,68), and the pair (228,72) are incomparable under Y . 

3.5.2 Restrictions 

We usually think of a single “less­than” relation, <, on real numbers, or rational numbers, or 
integers. Technically, these a different relations because they have different domains and graphs, 
but there is an obvious connection: the < order on, say, the rationals is gotten by restricting the 
real order to the subset of rationals. 

Definition 3.13. Let R be a relation on a set, A, and let B be a subset of A. The restriction of R to B 
is the relation on B whose graph is graph (R) ∩ (B × B). 

Restrictions preserve many relational properties. For example, restriction preserves transitivity, 
that is, if R is transitive, then so is any restriction of R. Restriction also preserves symmetry, anti­
symmetry, asymmetry, reflexivity, and irreflexivity. This implies that the restriction of an equiva­
lence relation is an equivalence relation, and the restriction of a partial order is a partial order. 

But restriction doesn’t preserve all the relational properties we’ve considered. For example, being 
a surjective relation is not preserved by restriction, nor is being a total relation. 

We’ll leave the proofs of these claims to the reader; they’re all easy. 
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4 Digraphs 

A directed graph (digraph for short) is formally the same as a binary relation on a set, A, but we 
picture the digraph geometrically by representing elements of A as points on the plane, with an 
arrow from the point for a to the point for b exactly when aR b. The elements of A are referred to 
as the vertices of the digraph. 

Example 4.1. The divisibility relation on {1, 2, . . . , 12} is represented by the digraph: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

4.1 Paths in Digraphs 

Definition 4.2. A path in a digraph, R, is a sequence of vertices a0, . . . , ak with k ≥ 0 such that 
ai R ai+1 for every 0 ≤ i < k. The path is said to start at a0, to end at ak, and the length of the path 
is defined to be k. 

Pictured with points and arrows, a path a0, . . . , ak looks like a line that starts at the point a0 and 
follows arrows between successive points on the path to end at ak. Note that a single point counts 
as a length zero path (this is just for convenience). 

Many of the relational properties have geometric descriptions in terms of digraphs. For example: 

Reflexivity: All vertices have self­loops (a self­loop at a vertex is an arrow going from the vertex 
back to itself). 

Irreflexivity: No vertices have self­loops. 

Symmetry: All edges are bidirectional. 

Transitivity: Short­circuits—for any path through the graph, there is an arrow from the first ver­
tex to the last vertex on the path. 

We can define some new relations based on paths. Let R be a digraph with vertices, A. Define 
relations R∗ and R+ on A by the conditions that 

aR∗ b ::= there is a path in R from a to b, 

aR+ b ::= there is a positive length path in R from a to b. 
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R∗ is called the path relation of R. It follows from the definition of path that R∗ is transitive. It 
is also reflexive (because of the length­zero paths) and it contains the graph of R (because of the 
length­one paths). R+ is called the positive­length path relation; it also contains graph (R) and is 
transitive. 

4.2 Directed Acyclic Graphs 

Scheduling problems are a common source of partial orders: there is a set, A, of tasks and a 
set of constraints specifying that starting a certain task depends on other tasks being completed 
beforehand. We represent the task by vertices and a constraint that task a must finish before task 
b can start by an arrow from a to b. 

Example 4.3. Here is a graph that describes the order in which you could put on clothes. The tasks 
are the clothes to be put on, and the edges say what should be put on before what. 

left sock right sock 

left shoe right shoe belt 

pants sweater 

jacket 

underwear shirt 

This “depends on” graph imposes a partial ordering on tasks. But what if we add a relation edge 
from belt to underwear? In that case the dependency graph stops making sense: there is no way 
to get dressed! What goes wrong is that the added edge creates a “cyclic” dependency. 

Definition 4.4. A cycle is a positive length path in a digraph that begins and ends at the same 
vertex. A directed acyclic graph (DAG) is a directed graph with no cycles. 

So a task graph had better be a DAG for its tasks to be doable in an order that respects task 
dependencies. 

We use DAG’s as an economical way to represent the dependency relation. Usually a task­graph 
DAG itself is not a transitive relation because it includes only the edges showing “direct” de­
pendencies. Rather, the dependency relation we care about is defined by the positive length path 
relation, R+, in the task graph. The dependency relation will always be a partial order: 

Lemma 4.5. If D is a DAG, then D+ is a strict partial order. 

Proof. We know that D+ is transitive. Also, a positive length path from a vertex to itself would be 
a cycle, so there are no such paths. This means D+ is irreflexive, and so by Theorem 3.11, it is a 
strict partial order. 



. . .

Course Notes, Week 4: Binary Relations 13 

4.3 Topological Sorting 

In a DAG for a partial order, incomparable elements appear as vertices with no path between them 
in either direction. So in the partial order on clothes from Example 4.3 “left shoe” and “right shoe” 
are incomparable. If the order is total, there are no incomparable elements, and the order can be 
represented by a DAG looks like a line: 

When we have a partial order of tasks to be performed, it can be useful to have an order in which 
to perform all the tasks, one at a time, while respecting the dependency constraints. This amounts 
to finding a total order that is consistent with the partial order. This task of finding a total ordering 
that is consistent with a partial order is known as topological sorting. 

Definition 4.6. A topological sort of a partial order, �, on a set, A, is a total ordering, �, on A such 
that 

a � b implies a � b. 

For example, 

shirt � sweater � underwear � leftsock � rightsock � pants � leftshoe � rightshoe � belt � jacket, 

is one topological sort of the partial order of dressing tasks given by the DAG of Example 4.3; 
there are several other possible sorts as well. 

Topological sorts for finite DAG’s are easy to construct by starting from minimal elements: 

Definition 4.7. Let � be a partial order on a set, A, and let a be an element of A. Then a is minimal 
iff no other element is � a. Similarly, a is maximal iff no other element is � a. 

In a total order, there can only be one minimal element, but in general there can be more than one 
minimal element in a partial order. There are four in the clothes example: leftsock, rightsock, un­
derwear, and shirt. To construct a total ordering for getting dressed, we pick one of these minimal 
elements, say shirt. Next we pick a minimal element among the remaining ones. For example, 
once we have removed shirt, sweater becomes minimal. We continue in this way removing suc­
cessive minimal elements until all elements have been picked. The sequence of elements in the 
order they were picked will be a topological sort. This is how the topological sort above for getting 
dressed was contructed. 

For this method of topological sorting to work, we need to be sure there is always a minimal 
element. (An infinite partially ordered set might have no minimal element: consider ≤ on the Z.) 

Lemma 4.8. Every partial order on a nonempty finite set has a minimal element. 
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Proof. Let R be a partial order on a set, A. For any element, a ∈ A, let g(a) be the set of elements 
“less than or equal to a”, that is, 

g(a) ::= R { a} .a} ∪ {

Now if b R a, then transitivity of R implies that g(b) ⊆ g(a). Also, if b R a and b = a, then a /∈ g(b) 
since R is antisymmetric, and so g(b) ⊂ g(a). So if a is not minimal, then there is some b such that 
g(b) ⊂ g(a). If A is finite, this implies that g(b) < g(a) .| | | |

So if A is finite, the Well Ordering Principle implies that there must be an a0 such that g(a0) has 
minimum size. So no g(b) can be smaller than g(a0), which means a0 must be minimal. 

Theorem 4.9. Every partial order on a finite set has a topological sort. 

Proof. We prove Theorem 4.9 by induction on n with hypothesis 

P (n) ::= [any partial order on a set with n elements has a topological sort]. 

Base case n = 1: a topological sort of a set with one element is simply that element. 

Inductive step: Assume P (n). Consider a partial order, � on a set, A, with n + 1 elements. By 
Lemma 4.8, A must have a minimal element, a0. Now the restriction of � to the set A−{a0} is also 
a partial order. So by the inductive hypothesis, A− {a0} has a topological sort �n. Now define � 
on A by the rule that a � b iff [a �n b or a = a0]. It’s now easy to check that � is the required 
topological sort of A. This proves P (n + 1), completing the proof by induction. 

There are many other ways of contructing topological sorts. In fact, the domain of the partial order 
need not be finite: we won’t prove it, but all partial orders, even infinite ones, have topological 
sorts. 

4.4 Parallel Task Scheduling 

For the partial order of dependencies among task, topological sorting provides a way to execute 
tasks sequentially without violating the dependencies. But what if we have the ability to execute 
more than one task at the same time? For example, say tasks are programs, the partial order 
indicates data dependence, and we have a parallel machine with lots of processors instead of a 
sequential machine with only one. How should we schedule the tasks? Our goal should be to 
minimize the total time to complete all the tasks. For simplicity, let’s say all the tasks take the same 
amount of time and all the processors are identical. 

So, given a finite partially ordered set of tasks, how long does it take to do them all, in an optimal 
parallel schedule? We can also use partial order concepts to analyze this problem. 

In the clothes example, we could do all the minimal elements first (leftsock, rightsock, underwear, 
shirt), remove them and repeat. We’d need lots of hands, or maybe dressing servants. We can do 
pants and sweater next, and then leftshoe, rightshoe, and belt, and finally jacket. 

We can’t do any better, because the sequence underwear, pants, belt, jacket must be done in that 
order. A set of asks that must be done in sequence like this is called a chain. 

Definition 4.10. A chain in a partial order is a set of elements such that any two elements in the 
set are comparable. 
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An alternative definition is that a chain in a partial order is a set, C, domain elements such that 
the restriction of the partial order to C is a total order. 

Note that vertices on any path in the DAG of the partial order is a chain. In general, a chain only 
contains vertices on a path but may skip some vertices on it. Clearly, the parallel time must be at 
least the size of any chain. For if we used less time, then two tasks in the chain would have to be 
done at the same time, violating the dependency constraints. 

A largest chain is also known as a critical path. So we need at least t steps, where t is the size3 of a 
largest chain. Fortunately, it is always possible to use only t parallel steps: 

Theorem 4.11. Let R be strict partial order on a set, A. If the longest chain in A is of size t, then there is a 
partition of A into t blocks, B1, B2, . . . , Bt, such that for each block, Bi, all tasks that have to precede tasks 
in Bi are in smaller­numbered groups: 

RB1 = ∅, and (10) 
RBi ⊆ B1 ∪B2 ∪ · · · ∪Bi−1, (11) 

for 1 < i ≤ t. 

Corollary 4.12. For R and t as above, it is possible to schedule all tasks in t steps. 

Proof. Schedule all the elements of Bi at time i. This satisfies the dependency requirements, be­
cause all the tasks that any task depends on are scheduled at preceding times. 

B2 

B3 

B4 

left shoe right shoe belt 

pants sweater 

jacket 

B1 left sock right sock underwear shirt 

Corollary 4.13. Parallel time = Size of largest chain. 

So it remains to prove Theorem 4.11: 

Proof. Construct the sets Bi as follows: 

Bi ::= {a ∈ A the largest chain ending in a is of size i} .| 

This gives just t sets, because the largest chain is of size t. Also, each a ∈ A belongs to exactly one 
Bi. To complete the proof, notice that if a ∈ B1, then a must be minimal, and since R is strict we 
have RB1 = ∅ proving (10). 

Now suppose 1 < i ≤ t, and assume for the sake of contradiction that (11) does not hold. That is, 
there is an a ∈ Bi and b ∈ A such that b R a, and b /∈ B1 ∪B2 ∪ · · · ∪Bi−1. Then by definition of the 
Bj ’s, there is a chain of size > i− 1 ending at b. Also, since R is strict, a is not in the chain ending 
at b. So we can add a to the end of the chain to obtain a chain of size > i ending in a, contradicting 
the fact that that a ∈ Bi. 

3Picky point: the length of a chain a0 � a1 · · · � ak is k, corresponding to the number of arrows it traverses. The size 
of the chain is the number of elements in it, namely, k + 1. 
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So with an unlimited number of processors, the time to complete all the tasks is the size of the 
largest chain. It turns out that this theorem is good for more than parallel scheduling. It is usually 
stated as follows. 

Definition 4.14. An antichain in a partial order is a set of elements such that any two elements in 
the set are incomparable. 

Corollary 4.15. If the largest chain in a partial order is of size, t, then the domain can be partitioned into t 
antichains. 

Proof. Let the antichains be the sets Bi defined as in the proof of Theorem 4.11. 

We should verify that each Bi is an antichain, namely, if a, b are distinct elements of Bi, then they 
are incomparable. But suppose to the contrary that there exist two elements a, b ∈ Bi such that 
a and b are comparable, say a R b. Then, as in the proof of Theorem 4.11, by adding b at the end 
of the chain of size i ending at a, we obtain a chain of size i + 1 ending at b, contradicting the 
assumption that b ∈ Bi. 

4.5 Dilworth’s Lemma 

We can use the Corollary 4.15 to prove a famous result4 about partially ordered sets: 

Lemma 4.16 (Dilworth). For all t, every partially ordered set with n elements must have either a chain of 
size greater than t or an antichain of size at least n/t. 

Proof. Assume there is no chain of size greater than t, that is, the largest chain is of size ≤ t. Then 
by Corollary 4.15, the n elements can be partitioned into at most t antichains. Let � be the size of 
the largest antichain. Since every element belongs to exactly one antichain, and there are at most 
t antichains, there can’t be more than �t elements, namely, �t ≥ n. So there is an antichain with at 
least � ≥ n/t elements. 

Corollary 4.17. Every partially ordered set with n elements has a chain of size greater than 
√

n or an 
antichain of size at least 

√
n. 

Proof. Set t = 
√

n in Lemma 4.16. 

Example 4.18. In the dressing partially ordered set, n = 10. Try t = 3. Has a chain of size 4. Try 
t = 4. Has no chain of size 5, but has an antichain of size 4 ≥ 10/4. 

Example 4.19. Suppose we have a class of 101 students. Then using the product partial order, 
Y , from Example 3.12, we can apply Dilworth’s Lemma to conclude that there is a chain of 11 
students who get taller as they get older, or an antichain of 11 students who get taller as they get 
younger, which makes for an amusing in­class demo. 

As a curious consequence of Corollary 4.17, we have: 

Corollary 4.20. In any sequence of n different numbers, there is either an increasing subsequence of length 
greater than 

√
n or a decreasing subsequence of length at least 

√
n. 

4Lemma 4.16 also follows from a more general result known as Dilworth’s Theorem which we will not discuss. 
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Example 4.21. The sequence 

�6, 4, 7, 9, 1, 2, 5, 3, 8� 

has the decreasing sequence �6, 4, 1� and the increasing sequence �1, 2, 3, 8�. 

Proof. We can prove Corollary 4.20 using Dilworth’s Lemma; the trick is to define the appropriate 
partially ordered set. Suppose the given sequence is 

< an.a1 < a2 < · · · 

Let the domain of the partial order be the set of pairs (i, ai) for 1 ≤ i ≤ n, and define 

(i, ai) � (j, aj) iff i < j ∧ ai < aj . 

So � is a strict partial order because it is a restriction of the product of the < relations on {1, . . . , n}
and {a1, . . . , an} 

Now given a �­chain, if we arrange the elements so that their first coordinates are in increasing 
order, their second coordinates must also be in increasing order. That is, if we have 

(i1, ai1) � (i2, ai2) � · · · � (ik, aik), 

then the ij ’s and the aij ’s both increase from left to right. This means that a chain corresponds to 
an increasing subsequence. 

But what does an antichain correspond to? Well, suppose i < j and (i, ai) and (j, aj) are �­
incomparable; then by definition, we must have ai > aj . So given an antichain, if we arrange the 
elements so that their first coordinates are in increasing order, their second coordinates are in de­
creasing order. That is, an antichain, with its elements sorted on their first coordinates, corresponds 
to a decreasing subsequence. 

Corollary 4.20 now follows immediately from Dilworth’s Lemma. 

Quick Exercise: What is the size of the longest chain that is guaranteed to exist in any partially 
ordered set of n elements? What about the largest antichain? 

Problem 3. Describe a sequence consisting of the integers from 1 to 10,000 in some order so that 
there is no increasing or decreasing subsequence of size 101. 

Not So Quick Exercise: Devise an efficient procedure for finding the longest increasing and the 
longest decreasing subsequence in any given sequence of integers. (There is a nice one.) 

5 Undirected Graphs 

Informally, an undirected graph, or ugraph for short, is a bunch of dots connected by lines. Here is 
an example of a graph: 
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A

B

C

D

E

F

G

H

I

Sadly, this definition is not precise enough for mathematical discussion. 

Definition 5.1. A ugraph, G, consists of a set, V , called the vertices of G, and a collection, E, of two 
element subsets of V . The elements of E are called the edges of G. 

The vertices correspond to the dots in the picture, and the edges correspond to the lines. Thus, the 
dots­and­lines diagram above is a pictorial representation of the ugraph where: 

V = {A,B, C, D, E, F,G,H, I}


E = {{A,B} , {A,C} , {B,D} , {C,D} , {C,E} , {E,F} , {E,G} , {H, I}} .


It will be helpful to use the notation A—B for the edge {A,B}. Note that A—B and B—A are 
different descriptions of the same edge, since sets are unordered. 

Two vertices in a graph are said to be adjacent if they are joined by an edge, and an edge is said 
to be incident to the vertices it joins. The number of edges incident to a vertex is called the degree 
of the vertex. For example, in the graph above, A is adjacent to B and B is adjacent to D, and 
the edge A—C is incident to vertices A and C. Vertex H has degree 1, D has degree 2, and E has 
degree 3. 

Ugraphs are essentially the same as symmetric relations or digraphs with a reverse arrow for 
every arrow. They have surprisingly many applications, for example, in solving routing, schedule 
conflict, and molecular structure problems. 

In the remainder of this section, we’ll refer to ugraphs simply as graphs. 

5.1 Some Common Graphs 

Some graphs come up so frequently that they have names. The complete graph on n vertices, also 
called Kn, has an edge between every two vertices. Here is K5: 
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The empty graph has no edges at all. Here is the empty graph on 5 vertices: 

Another 5 vertex graph is L4, the line graph of length four: 

And here is C5, a simple cycle with 5 vertices: 

5.2 Isomorphism 

Two graphs that look the same might actually be different in a formal sense. For example, the two 
graphs below are both simple cycles with 4 vertices: 

A B

CD

1 2

34
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But one graph has vertex set {A,B, C, D} while the other has vertex set {1, 2, 3, 4}. If so, then the 
graphs are different mathematical objects, strictly speaking. But this is a frustrating distinction; 
the graphs look the same! 

Fortunately, we can neatly capture the idea of “looks the same” and use that as our main notion 
of equivalence between graphs. Graphs G1 and G2 are isomorphic if there exists a one­to­one cor­
respondence between vertices in G1 and vertices in G2 such that there is an edge between two 
vertices in G1 if and only if there is an edge between the two corresponding vertices in G2. For 
example, take the following correspondence between vertices in the two graphs above: 

A corresponds to 1 B corresponds to 2 
D corresponds to 4 C corresponds to 3. 

Now there is an edge between two vertices in the graph on the left if and only if there is an edge 
between the two corresponding vertices in the graph on the right. Therefore, the two graphs are 
isomorphic. The correspondence itself is called an isomorphism. 

In more formal terms, if G1 is a graph with vertices, V1, and edges, E1, and likewise for G2, then 
G1 is isomorphic to G2 iff there exists a bijective function f : V1 → V2 such that for every pair of 
vertices u, v ∈ V1: 

u—v ∈ E1 iff f(u)—f(v) ∈ E2. 

The function f that defines the correspondence between vertices is called an isomorphism. 

Two isomorphic graphs may be drawn to look quite different. For example, here are two different 
ways of drawing C5: 

Isomorphism captures all the connection properties of a graph, abstracting out what the vertices 
are called, what they are made out of, or where they appear in a drawing of the graph. So a 
property like “having three vertices of degree 4” is preserved under isomorphism, while “having 
a vertex that is an integer” is not preserved. In particular, if one graph has three vertices of degree 
4 and another does not, they can’t be isomorphic. Similarly, if one graph has an edge that is 
incident to degree 8 vertex and a degree 3 vertex, then any isomorphic graph must also have such 
an edge. 

Looking for properties like these can make it easy to determine that two graphs are not isomor­
phic, or to actually find an isomorphism between them, if there is one. In practice, this frequently 
makes the problem of deciding if two graphs are isomorphic fairly easy. However, no one has yet 
found a general procedure for determining whether two graphs are isomorphic which is guaran­
teed to run much faster than an exhaustive (and exhausting) search through all possible bijections 
between their sets of vertices. 
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Having an efficient isomorphism finding/testing procedure would, for example, make it easy to 
search for a particular molecule in a database given the molecular bonds. On other hand, knowing 
there was no such efficient procedure would also be valuable: it would justify the security of a 
secure, reusable personal identification protocol that would be great for internet commerce. We’ll 
explain this further in lecture on Friday. 
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