
�

6.042/18.062J Mathematics for Computer Science October 5, 2010
Tom Leighton and Marten van Dijk

Notes for Recitation 8

1 Build-up error

Recall a graph is connected iff there is a path between every pair of its vertices.

False Claim. If every vertex in a graph has positive degree, then the graph is connected.

1. Prove that this Claim is indeed false by providing a counterexample.

Solution. There are many counterexamples; here is one:

2. Since the Claim is false, there must be a logical mistake in the following bogus proof.
Pinpoint the first logical mistake (unjustified step) in the proof.

Proof. We prove the Claim above by induction. Let P (n) be the proposition that if
every vertex in an n-vertex graph has positive degree, then the graph is connected.

Base cases: (n ≤ 2). In a graph with 1 vertex, that vertex cannot have positive
degree, so P (1) holds vacuously.

P (2) holds because there is only one graph with two vertices of positive degree, namely,
the graph with an edge between the vertices, and this graph is connected.

Inductive step: We must show that P (n) implies P (n + 1) for all n ≥ 2. Consider
an n-vertex graph in which every vertex has positive degree. By the assumption P (n),
this graph is connected; that is, there is a path between every pair of vertices. Now
we add one more vertex x to obtain an (n + 1)-vertex graph:

2 Recitation 8

z

y

X

n − vertex graph

All that remains is to check that there is a path from x to every other vertex z. Since
x has positive degree, there is an edge from x to some other vertex, y. Thus, we can
obtain a path from x to z by going from x to y and then following the path from y to
z. This proves P (n + 1).

By the principle of induction, P (n) is true for all n ≥ 0, which proves the Claim.

Solution. This one is tricky: the proof is actually a good proof of something else.
The first error in the proof is only in the final statement of the inductive step: “This
proves P (n + 1)”.

The issue is that to prove P (n + 1), every (n + 1)-vertex positive-degree graph must
be shown to be connected. But the proof doesn’t show this. Instead, it shows that
every (n + 1)-vertex positive-degree graph that can be built up by adding a vertex of
positive degree to an n-vertex connected graph, is connected.

The problem is that not every (n + 1)-vertex positive-degree graph can be built up
in this way. The counterexample above illustrates this: there is no way to build that
4-vertex positive-degree graph from a 3-vertex positive-degree graph.

More generally, this is an example of “buildup error”. This error arises from a faulty
assumption that every size n + 1 graph with some property can be “built up” in
some particular way from a size n graph with the same property. (This assumption is
correct for some properties, but incorrect for others— such as the one in the argument
above.)

One way to avoid an accidental build-up error is to use a “shrink down, grow back”
process in the inductive step: start with a size n+1 graph, remove a vertex (or edge),
apply the inductive hypothesis P (n) to the smaller graph, and then add back the
vertex (or edge) and argue that P (n + 1) holds. Let’s see what would have happened
if we’d tried to prove the claim above by this method:

Inductive step: We must show that P (n) implies P (n + 1) for all n ≥ 1. Consider
an (n + 1)-vertex graph G in which every vertex has degree at least 1. Remove an
arbitrary vertex v, leaving an n-vertex graph G� in which every vertex has degree...
uh-oh!

Recitation 8 3

The reduced graph G� might contain a vertex of degree 0, making the inductive
hypothesis P (n) inapplicable! We are stuck— and properly so, since the claim is
false! �

2 The Grow Algorithm

Yesterday in lecture, we saw the following algorithm for constructing a minimum-weight
spanning tree (MST) from an edge-weighted N -vertex graph G.

ALG-GROW:

1. Label the edges of the graph e1, e2, . . . , et so that wt(e1) ≤ wt(e2) . . . ≤ wt(et).

2. Let S be the empty set.

3. For i = 1 . . . t, if S ∪ {ei} does not contain a cycle, then extend S with the edge ei.

4. Output S.

In summary, ALG-GROW selects edges one at a time, always choosing the minimum
weight edge that does not create a cycle with previously selected edges. Notice that as edges
are added S may not be connected. When the algorithm terminates, S contains N −1 edges.
If it is connected, then it is a spanning tree.

Consider, for example, the following edge-weighted graph.

2
1

2 3

4 1

1

1

3

3

7

Now suppose we run ALG-GROW on our graph. We may choose the weight 1 edge on
the bottom of the triangle of weight 1 edges in our graph. In the next step, we may choose
the weight 1 edge on the top of the graph. Note that this edge still has minimum weight,
and does not cause us to form a cycle, so ALG-GROW can choose it. We will then choose
one of the remaining weight 1 edges. Note that neither causes us to form a cycle. Continuing
the algorithm, we may end up with the same spanning tree shown below.

�

4 Recitation 8

1

2

1

1

3

7

2

In this recitation, we will analyze ALG-GROW.

3 Analysis of ALG-GROW

In this problem you may assume the following lemma from the problem set:

Lemma 1. Suppose that T = (V,E) is a simple, connected graph. Then T is a tree iff
|E| = |V | − 1.

In this exercise you will prove the following theorem.

Theorem. For any connected, weighted graph G, ALG-GROW produces an MST of G.

(a) Prove the following lemma.

Lemma 2. Let T = (V,E) be a tree and let e be an edge not in E. Then, G =
(V,E ∪ {e}) contains a cycle.

(Hint: Suppose G does not contain a cycle. Is G a tree?)

Solution. Proof. (by contradiction) Suppose G does not contain a cycle. By the
definition of a tree, T is connected. Notice that T is a subgraph of G. Because any two
nodes in G are connected by a path in T , G is a connected graph. So G is connected
and acyclic and therefore a tree by definition. Both G and T are trees and have the
same number of nodes. Therefore, they have the same number of edges (by Lemma 1).
This is a contradiction because G has one more edge than T .

(b) Prove the following lemma.

Lemma 3. Let T = (V,E) be a spanning tree of G and let e be an edge not in E.
Then there exists an edge e� =� e in E such that T ∗ = (V,E −{e�} ∪ {e}) is a spanning
tree of G.

�

�

�
�

�

5 Recitation 8

(Hint: Adding e to E introduces a cycle in (V,E ∪ {e}).)

Solution. Proof. By Lemma 2, we know that the set of edges E ∪{e} contains a cycle.
If this cycle does not contain the edge e, then this cycle is a subset of E. Since E is
the set of edges of a tree, this cannot occur. So, this cycle contains e. If e� is another
edge distinct from e in this cycle, then the graph T ∗ that results after removing e� from
E ∪ {e} is still connected. The number of edges in T ∗ is equal to the number of edges
in T , which is equal to |V | − 1 by Lemma 1. Since T ∗ is connected, T ∗ is a tree by
Lemma 1. Since T ∗ is a subgraph of G with vertices V , it spans G.

(c) Prove the following lemma.

Lemma 4. Let T = (V,E) be a spanning tree of G, let e be an edge not in E and let
S ⊆ E such that S ∪ {e} does not contain a cycle. Then there exists an edge e� =� e in
E − S such that T ∗ = (V,E − {e�} ∪ {e}) is a spanning tree of G.

(Hint: Modify your proof to part (b). Of all possible edges e� = e that can be removed
to construct T ∗, at least one is not in S.)

Solution. Proof. We need to change the proof in part (b) slightly. The proof of part
(b) holds for any edge e� = e in the cycle. We need to show that we can select an edge
e� = e that is in the cycle but not in S. We will prove this by contradiction. Suppose
that all the edges not equal to e that are in the cycle are in S. Then, S ∪ e is a cycle.
This contradicts the assumption of the lemma.

(d) Prove the following lemma.

Lemma 5. Define Sm to be the set consisting of the first m edges selected by ALG
GROW from a connected graph G. Let P (m) be the predicate that if m ≤ |V | then
Sm ⊆ E for some MST T = (V,E) of G. Then ∀m . P (m).

(Hint: Use induction. There are two cases: m + 1 > |V | and m + 1 ≤ |V |. In the

second case, there are two subcases.)

Solution. Proof. (By induction.) Let P (m) be the predicate as defined above.

Base Case: S0 contains 0 edges and is equal to the empty set, which is a subset of any

set of edges E.

Inductive Step: Assume P (m) in order to prove P (m + 1).

If m ≥ |V | then m+1 > |V | and P (m+1) holds vacuously. Otherwise, if m < |V | then

let e denote the (m + 1)th edge selected by ALG-GROW. By the inductive hypothesis,

there exists an MST T = (V,E) such that Sm ⊆ E. There are now two cases.

In the first case, e ∈ E which case Sm ∪ {e} ⊆ E, and thus P (m + 1) holds.

�

�	 �

�

6 Recitation 8

In the second case, e ∈/ E, as illustrated by the following diagram. Now we need to
find a different MST that contains Sm ∪ {e}.

e

e’

S =

E* = S U { }

e = (m+1)st edge

What happens when we add e to T ? By the description of ALG-GROW, Sm ∪{e} does
not contain a cycle. Therefore, by Lemma 4, there exists an edge e� =� e in E − Sm

such that T ∗ = (V,E − {e�} ∪ {e}) is a spanning tree for G.

In order to prove that T ∗ is a MST, we need to show that wt(e) ≤ wt(e�). We will
prove this by contradiction. Suppose that wt(e�) < wt(e). Since e� ∈ E, which is the
set of edges of the MST T , and Sm ⊆ E, the set of edges Sm ∪ {e�}, does not contain
a cycle. Therefore e� would have already been added to Sm in a previous iteration
of ALG-GROW as one of the first m edges. However, e� is in E − Sm. This is a
contradiction.

(e)	 Prove the theorem. (Hint: Lemma 5 says there exists an MST T = (V,E) for G such
that S ⊆ E. Use contradiction to rule out the case in which S is a proper subset of
E.)

Solution. Proof. (by contradiction) Let S be the set of edges produced by ALG
GROW. By Lemma 5, there exists an MST T = (V,E) for G such that S ⊆ E. If
S = E, then ALG-GROW outputs the edges of the MST T .

We will show that the other case, S = E, leads to a contradiction. Suppose S = E.
Then there exists an edge e ∈ E − S. This implies that S ∪ {e} ⊆ E. Since E is the
set of edges of a tree, S ∪ {e} does not contain a cycle. Therefore, e would be added
to S by ALG-GROW. So e ∈ S, and this contradicts e ∈ E − S.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Build-up error
	The Grow Algorithm
	Analysis of ALG-GROW

