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In-Class Problems Week 6, Fri.

Problem 1.
Let’s try out RSA! There is a complete description of the algorithm in the text box. You’ll probably need
extra paper. Check your work carefully!
(a) Go through the beforehand steps.

� Choose primes p and q to be relatively small, say in the range 10-40. In practice, p and q might
contain hundreds of digits, but small numbers are easier to handle with pencil and paper.

� Try e D 3; 5; 7; : : : until you find something that works. Use Euclid’s algorithm to compute the gcd.

� Find d (using the Pulverizer or Euler’s Theorem).

When you’re done, put your public key on the board prominentally labelled “Public Key.” This lets another
team send you a message.

(b) Now send an encrypted message to another team using their public key. Select your message m from
the codebook below:

� 2 = Greetings and salutations!

� 3 = Yo, wassup?

� 4 = You guys are slow!

� 5 = All your base are belong to us.

� 6 = Someone on our team thinks someone on your team is kinda cute.

� 7 = You are the weakest link. Goodbye.

(c) Decrypt the message sent to you and verify that you received what the other team sent!

Problem 2. (a) Just as RSA would be trivial to crack knowing the factorization into two primes of n in the
public key, explain why RSA would also be trivial to crack knowing �.n/.

(b) Show that if you knew n, �.n/, and that n was the product of two primes, then you could easily factor
n.

Problem 3.
A critical fact about RSA is, of course, that decrypting an encrypted message always gives back the original
message, m. Namely, if n D pq where p and q are distinct primes, m 2 Œ0::pq/, and

d � e � 1 .mod .p � 1/.q � 1//;
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e’ll now prove this.

�d
D m .Zn/: (1)

(a) Explain why (1) follows very simply

b
from Euler’s theorem when m is relatively prime to n.

All the rest of this problem is about removing the restriction thatm be relatively prime to n. That is, we aim
to prove that equation (1) holds for all m 2 Œ0::n/.

It is important to realize that, even if it was theoretically necessary, there would be no practical reason to
worry about—or to bother to check for—this relative primality condition before sending a messagem using
RSA. That’s because the whole RSA enterprise is predicated on the difficulty of factoring. If an m ever
came up that wasn’t relatively prime to n, then we could factor n by computing gcd.m; n/. So believing in
the security of RSA implies believing that the probability of a message m turning up that was not relatively
prime to n is negligible.

But let’s be pure, impractical mathematicians and rid of this technically unnecessary relative primality
side condition, even if it is harmless. One gain for doing this is that statements about RSA will be simpler
without the side condition. More important, the proof below illustrates a useful general method of proving
things about a number n by proving them separately for the prime factors of n.

(b) Prove that if p is prime and a � 1 .mod p � 1/, then

am D m .Zp/: (2)

(c) Give an elementary proof1 that if a � b .mod pi / for distinct primes pi , then a � b modulo the
product of these primes.

(d) Note that (1) is a special case of
Claim. If n is a product of distinct primes and a � 1 .mod �.n//, then

am D m .Zn/:

Use the previous parts to prove the Claim.

1There is no need to appeal to the Chinese Remainder Theorem.
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The RSA Cryptosystem

A Receiver who wants to be able to receive secret numerical messages creates a private key, which they
keep secret, and a public key, which they make publicly available. Anyone with the public key can then be
a Sender who can publicly send secret messages to the Receiver—even if they have never communicated
or shared any information besides the public key.

Here is how they do it:
Beforehand The Receiver creates a public key and a private key as follows.

1. Generate two distinct primes, p and q. These are used to generate the private key, and they
must be kept hidden. (In current practice, p and q are chosen to be hundreds of digits long.)

2. Let n WWD pq.

3. Select an integer e 2 Œ1; n/ such that gcd.e; .p � 1/.q � 1// D 1.
The public key is the pair .e; n/. This should be distributed widely.

4. Compute d 2 Œ1; n/ such that de � 1 .mod .p � 1/.q � 1//. This can be done using the
Pulverizer.
The private key is the pair .d; n/. This should be kept hidden!

Encoding To transmit a message m 2 Œ0; n/ to Receiver, a Sender uses the public key to encrypt m into
a numerical message

mb WWD rem e.m ; n/:

The Sender can then publicly transmit mb to the Receiver.

Decoding The Receiver decrypts message mb back to message m using the private key:

m D rem.mbd ; n/:
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