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RSA encryption 

Mathematics for Computer Science 
MIT 6.042J/18.062J 
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Public Key Cryptosystem 

Anyone can send a secret 
(encrypted) message to the 
receiver, without any prior 
contact, using publicly 
available info. 
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Public Key Cryptosystem 

This sounds paradoxical: how 
can secrecy be possible using 
only public info? 
Actually has paradoxical 
consequences. 
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Mental Chess 
Chess masters can play without 
having a chess board: 

“mental chess.” 
OK, how about “mental poker”? 
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--I’ll deal. ☺
No joke! It’s possible. 
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One-way functions 
The paradoxical assumption is that 
there are one-way functions that are 
easy to compute but hard to invert. 
In particular, 
• it is easy to compute the product n 

of two (large) primes p and q. 
• But given n, it is generally very hard 

to factor n to recover p and q 
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The RSA 
Protocol 
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RSA Public Key Encryption 

Shamir Rivest Adleman 
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Beforehand 
receiver generates primes p, q 
n ::= p•q 
selects e rel. prime to (p-1)(q-1) 
(e, n) ::= public key, publishes it 
finds 
d is private key, keeps hidden 

d ::= e−1 (Z(p−1)(q−1) 
* ) 
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Photograph removed due to copyright restrictions.
See here: http://ams.org/samplings/feature-column/
fcarc-internet (under Public Key Systems)

http://ams.org/samplings/feature-column/fcarc-internet
http://ams.org/samplings/feature-column/fcarc-internet
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(m^)d (Z n) 
RSA.9 

RSA 
Encoding message m∈[1,n) 

send 
Decoding m^: 
receiver computes 

m =( 

m  ̂::= me (Z n) 
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Why does this work? 

follows easily from 
Euler’s Theorem when 

m ∈ Z n 
* 
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Why does this work? 

actually works for 
all m … explained in 
Class Problem 
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Receiver’s abilities 
find two large primes p, q 

- ok because: lots of primes 
- fast test for primality 

find e rel. prime to (p-1)(q-1) 
- ok: lots of rel. prime nums 
- gcd easy to compute 

find 
- easy using Pulverizer 

e−1 (Z(p−1)(q−1) 
* ) 
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lots of primes lots of primes 
Prime Number Thm: 

π(n) ::= |primes ≤ n| 
~ n/ln n (deep thm) 

Chebyshev’s bound: 
π(n) > n/4 log n 

“elementary” proof 
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Fermat Primality Test 
check if 

an−1 = 1 (Z )n
if fails, not prime (Fermat) 
choose random a in [1,n). 
if not prime, Pr(fails)>1/2 
(with rare exceptions) 

so for 200 digit #’s, 
at least 1/1000 is prime 
Chebyshev’s bound: 

π(n) > n/4 log n 

“elementary” proof 
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Why is it secure? 

• easy to break if can factor n 
(find d same way receiver did) 
• conversely, from d can factor n
 (but factoring appears hard 

so finding d must also be hard) 
•	 RSA has withstood 35 years of

attacks 
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