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PROFESSOR: So now we start on a unit of about a half a dozen lectures on probability theory which most

students have been exposed to, to some degree, in high school. We'll be taking a more

thorough and theoretical look at the subject in our six lectures but, before we begin, let's give a

little pitch for the significance of it. There's been extensive debate among the faculty that

probability theory belongs right up there with physics and chemistry and math as something

that should be a fundamental requirement for all students to know. It plays an absolutely

fundamental role in the hard sciences, and the social sciences, and in engineering that

pervades all those subjects. And it's hard to imagine somebody legitimately being called fully-

educated if they don't understand the basics of probability theory.

Historically, probability theory starts off in a somewhat disreputable way in the 17th and early

18th centuries with the analysis of gambling, but then it goes on to be the basis for the

insurance industry and underwriting, predicting life expectancies, so that you could understand

what kind of premiums to charge. And then it goes on to allow the interpretation of noisy data

with errors in it and the degree to which it confirms scientific and social science hypotheses.

But true to the historical basis, let's begin with an example from gambling that illustrates the

first idea of probability and then we're going to be working up to a methodology for inventing

probability models, called the tree model. So let's begin with an example from poker and I'd

like to ask a question. If I deal a hand of five cards in poker, what's the probability of getting

exactly two jacks? So there are 13 ranks and there are four kinds of jacks-- space, hearts,

diamonds, clubs-- what's the probability that, among my five cards, I'm going to get two of

them? Well, that's really a counting problem because I'm going to ask, first of all, how many

possible five-card hands are there?

We can think of these as the outcomes of a random experiment of just picking five cards. And

there are 52 choose 5 five-card hands in a 52-card deck. Then, there are 4 choose 2 ways of

picking the suits for the two jacks that we have and so the total number of hands that have two

jacks is simply 4 choose 2 times 52 minus 4, the remaining 48 cards, choose the remaining 3

cards in the five-card hand. And then what we would say is that the probability of two jacks is

basically the number of hands with two jacks divided by the total number of hands. Turns out

to be about 0.04 and, under this interpretation, basically, what we're thinking of probability as

telling us is, what fraction of the time do I get what I want? What's the fraction of the time that I



quote, "win" , if winning consists of getting a pair of jacks and, by symmetry and the fact that

we think of one hand is as likely to come up as another, this fraction of hands that equal two

jacks, it makes sense to think of that as that's the probability that we'll get that hand. If we think

of all the hands as being equally likely, we yank 1 out of the deck, the fraction of time that we

would expect to get two jacks is this number. About 0.04.

So, the general setup of probability, the first idea based on this illustration with a pair of jacks,

is that, abstractly, we have some random experiment that's capable of producing outcomes.

These are mathematical black boxes called outcomes. Now, a certain set of the outcomes, we

will think of as an event that we're interested in whether or not it happens. We could think of it

as the event of getting two jacks or the event of winning some game. Then we define the

probability of an event as simply the fraction of the outcomes in the event divided by the total

number of outcomes. Among all the outcomes, what fraction of outcomes are in the event?

And we define that to be the probability of the event. That's the first naive idea about

probability theory and it applies to a lot of cases, but not always.

So now, let's begin with an example which illustrates why this first idea needs to be refined and

it doesn't really give us the kind of theory of probability that we'd like. So let's turn to a game

that was really famous in the 1970s. An enormously popular TV game hosted by a man

named Monty Hall. The actual name of the TV show was called Let's Make a Deal, but we'll

refer to it as the Monty Hall game, and the way that this Let's Make A Deal show worked was,

roughly, that there were three doors. This is an actual picture of the stage set. Door 1, door 2,

door 3. And by the way, this game show still has a fan base. There's a website for it that you

can look at. Even 40 years later, people are still caught up in the dynamics of the game.

So there are these three doors and the idea is that behind the doors, they're going to have a

prize behind one of them and some kind of booby prize, often a goat held by a beautiful

woman holding a goat on a leash just to keep things visually interesting, and that's what you

got if you lost. And contestants were going to somehow or other pick a door and hope that the

prize was behind it. There's a picture of the staff. There's Monty Hall and the woman who was

his assistant, Carol Merrill. Her job was to pick doors to open and show them to contestants to

see what was behind them.

OK. So here are the rules for the Monty Hall game. The actual quiz show had more flexible

rules but, for simplicity, we're going to define a simple, precise, and fixed set of rules. The

rules are that, behind the three doors, two of the doors are going to have goats and one of the



doors is going to have a prize behind it. Often the prize is something like an automobile.

Something really desirable. So we can assume that the staff, on purpose, will place the price

at random behind the three doors because they don't want anybody to have a guess that

some doors are more likely than others to have the prize and they're not allowed to cheat.

That is, once they've decided which door is going to have the price, it's supposed to stay there

throughout the game. They can't move it in response to which door that the contestants pick.

That would be cheating.

OK. Next, the contestant is given an opportunity to pick one of the doors. They're all closed

and it's hard to understand how the contestant would make a choice, but if the contestant was

worried about the staff trying to outguess him on where to put the goat and where to put the

prize, the contestant should just pick all the doors with equally likelihood. Then he can't be

beaten by their trying to outguess him. He can only be beaten by if they cheated him by

moving the goat after he picked or moving the prize after he picked. At this point, once the

contestant has picked a door-- let's say he picks door 2-- then Monty instructs Carol to open a

door with a goat behind it. So he's going to choose an unpicked door. If the contestant has

picked door 2, that means that door 1 and door 3 are unpicked doors, and Monty tells Carol,

open either door 1 or door 3, whichever one-- or perhaps both-- have a goat behind them.

And so Carol is going to open one of those doors and show a goat and everybody knows that

they're going to see a goat because that's the way the game works. And then at this point,

when the contestant has seen that there's a door that has a goat behind it and they're sitting

on a picked door and there's another unopened door that hasn't been picked, the contestant's

job is to decide whether to stick with the door that they originally picked or switch to the other

unopened door. So if they picked door 2 and Carol opened door 3, they could stick with door 2

or they could switch to the closed door 1 and hope that maybe 1 has the price behind it. Those

are the rules of the game.

Now, the game got a lot of prominence in a magazine column written by a woman named

Marilyn Vos Savant. The name of the magazine column was called Ask Marilyn and she

advertises herself as having the highest recorded IQ of all time, some IQ of 200, and so she

runs a popular science and math column with various kinds of puzzles. And she took up the

analysis of the Monty Hall statistics and came to a conclusion and the conclusion caused a

firestorm of response. Letters from all sorts of readers, even quite sophisticated PhD

Mathematicians who were arguing with her conclusion about the way the game worked and



the probability of winning according to how the contested behaved.

The debate basically came down to these two positions. Position 1 said that sticking and

switching were equally good. It really didn't matter what the contestant did, whether they stuck

with the door that they originally picked or switched to the unpicked door after the third door

had been opened and that their likelihood of finding the prize was the same. And the other

argument, very emphatically, said switching is much better. You should really switch no matter

what. And how can we resolve this question?

Well, the general method that we're proposing for dealing with problems like this where we're

really trying to figure out, what is the probability model? Is to draw a tree that shows, step-by-

step, the progress of the process or experiment that's going to yield a random output and try

to assign probabilities to each of the branches of the tree as you go and use that as a guide

for how to assign probabilities to outcomes. So let's begin, first of all, by finding out what the

outcomes are, and we're going to be analyzing the switch strategy. So, just for definiteness,

let's suppose that the contestant adopts the strategy that they pick a door, Carol opens a door

that shows a goat, and they're going to switch to the non-goat closed door that they did not

originally pick. They're going to switch to the other door that they can switch to and we're

going to ask about, what are the outcomes and consequences of winning or losing if you adopt

that strategy?

Well, the tree of possibilities goes like this. The first step in this process that we've described is

that the staff picks a prize location, a door to put the prize behind, and so there are three

possibilities. They could put the prize behind door 1, door 2, and door 3. OK Well, let's

examine the possibility that they put the prize behind door 1. So the next stage is they pick a

door and if the prize is behind one and they pick a door, again, there are three possible doors

that the contestant might pick. The contestant has no idea where the price is and so the

contestant can choose either door 1 or door 2 or door 3. At that point, the third event in this

random process, or experiment, is that Carol opens a door that has a goat behind it.

So let's examine those possibilities. So, one possibility is that the prize is behind one and the

contestant picks door one, initially. Well that means that Carol can open either door 2 or door

3 in that circumstance because both of them have goats behind them. On the other hand, if

the prize is at 1 and the contestant picks door 2, the two closed doors have-- one has the

prize, 1, and the other doesn't have the prize, 3. Carol has to open door three. Likewise, if the

contestant picks door 3 when the prize is behind door 1, Carol has to open door 2. Here she's



got a two-way branch. She can choose to open either of the two goat doors, 2 or 3. Here

there's only one unopened door with a goat, she's got to open 3 there, too. OK.

And that describes the outcomes of the experiment. That's the process of the experiment and

these nodes at the end, these leaves of the tree, describe the final outcomes on this branch.

Now, if you look at the classification of these outcomes according to winning and losing, well,

we're looking at the switch strategy. So if the price was behind 1 and the contestant picked

door 1 initially, then their strategy is to switch and they're going to switch away from the prize

door. So whichever door Carol opened to reveal the goat, 2 or 3, the contestant is going to

switch to the other one and they're going to lose. So both of these outcomes count as losses

for the contestant.

On the other hand, if the prize was behind door 1 and the contestant picked door 2, then Carol

opens the non-prize door, 3, and the contestant switches from 2. The only choice they have is

to switch to 1, the prize door. They win. And this other case is symmetric. And that

summarizes the wins and losses in this branch of the tree. Now, of course, the rest of the tree

is symmetric so we don't need to talk it through again. This is just simply the case where the

prize is behind 2. The contestant has the same choices and [? Marilyn ?] has the same

choices of which unopened door to choose and likewise if the prize is behind 3.

So if we look at this tree, the tree is telling us that this is an experiment which we think of as

having twelve outcomes, four in each of these major branches. So there are twelve outcomes

of this random experiment, of which, six are losses and six are wins for the contestant and so

we discover that there's six wins and six losses. Now, the way that this game works, if you

think about it-- if the switching strategy wins, that means that the sticking strategy would have

lost because if switching wins, it meant that you switched to the door that had the prize and so

if you hadn't switched, you must have been at a door that didn't have the prize and likewise. If

switching loses, then you must have switched from the door with the prize to a door that didn't

have the prize-- switching-- and that means if you'd stuck, you would have won.

So what we can say is that really analyzing the switch strategy enables us to analyze the stick

strategy simultaneously because you win by sticking if and only if you lose by switching. Now

this simplification doesn't hold when there's more than three doors, and that's another

exercise, but for now, it's telling us that if we analyze the switch strategy, we also understand

the stick strategy. And of course, that means that if you use the stick strategy then the six wins

become losses and the six losses become wins and, again, there are six ways to lose and six



ways to win. So the first false conclusion from this is by reasoning about it as though they were

poker hands, and the false conclusion says, look, sticking and switching win with the same

number of outcomes and lose with the same number of outcomes. So it really doesn't matter

whether you stick or switch because the probability of winning, in both cases, is half the

outcome. 6 out of 12. The probability doesn't matter. It makes no difference whether you stick

or switch. And that's wrong, and we will see why soon.

The other false argument is that we think about what happens after Carol has opened a door.

So, where are we? The contestant has picked a door, has no idea where the goat or the prize

is. Carol opens the door and shows the contestant a goat. What's left? Well, there's two closed

doors left. One is the door with the prize and the other is the door without the price that has a

goat behind it and, by symmetry of the doors, the contestant has no idea what's behind the

door that he picked or the remaining unopened door. They're equally likely to contain the prize

and so the argument is, again, that whether you stick or switch between those two doors that

haven't yet been opened, it doesn't really matter and so, again, the stick strategy and the

switch strategy each win with the same 50-50 probability. And that's wrong, too.

What's wrong? Well, let's go back and look at this tree a little bit more carefully to understand

what's going on. And the first thing to notice about the tree is that the structure of the tree

leading to the leaves is not the same. Here's a leaf that has degree [? 2. ?] One way to get in

and only one way out and here's a leaf that has degree 3. One way in and two ways out, if we

think of going from the root to the leaf. And so it's not clear that these branches, these leaves,

should be treated the same way. Well let's think about it more carefully, about-- how are we

going to assign probabilities to the various steps of the experiment?

Well, what we're going to assume, for simplicity, is that the staff chooses a door at random to

place the prize. So that means that each of these branches occurs with probability 1/3. 1/3 of

the time, they put the prize behind door 1, 1/3 behind door 2, and 1/3 behind door 3. OK. Let's

continue exploring the branch where they put the prize behind door 1. At that point, the

contestant is going to pick a door and they can pick either door 1, 2, or 3 and, absent any

knowledge and also to be sure that they can't be outguessed by the staff realizing that they

mostly prefer door 1. So if they're going to switch, they'll put the prize behind door 1 to fool the

contestant. The contestant's protection is, pick a door at random. Choose door 1 1/3 of the

time, and door 2 1/3 of the time, and door 3 1/3 of the time in a completely unpredictable way.

And so the contestants is going to choose each of those possible doors as their first choice



with probability 1/3.

Now what happens next? Well, the next thing that happens is that Carol opens a door. Now

this is the case where Carol has a choice. The prize is behind one and the contestant

happened to pick door 1. That means doors 2 and 3 both have goats and, again, for simplicity,

let's assume the Carol, when she has a choice-- she can open either door 2 or door 3, here--

does them with equal probability. So we're going to assign probability 1/2 to her opening door

2 when she has the choice between 2 or 3 and probability 1/2 that she'll open door 3 and, by

the way, we saw that those were losing outcomes for the contestant.

But here, things are a little different. If the prize is behind door 1 and the contestant has

chosen door 2, Carol has no choice but to open the only other unchosen door with the goat

behind, namely, door 3. So we could say that this choice, really, is probability 1 and I got a little

bit ahead of myself here but, having filled in the probabilities on these edges, what we figured

out is that the probability of this topmost branch of losing is we said, well, 1/3 of the time you

go here and 1/3 of that third you go here and 1/2 of that time you go to this vertex. So it's 1/3

of 1/3 and 1/2 of that, or a weight of 1/18 and, by symmetry, this gets weight 1/18. But this

way, 1/3 of the time, the prize is behind door 1. 1/3 of the time, the contestant picks door 2

and after that, Carol is was forced to open door 3. So this branch occurs with certainty, as with

probability 1, which means that we wind up at this leaf 1/3 of 1/3 of the time for sure, and its

weight is 1/9. And of course, by symmetry, the similar weights get assigned to the winning and

the losing.

So what we've concluded is that, although there are six wins, the weight of the wins is 6/9

because they're each worth 1/9 of the time and that winning will occur 2/3 of the time.

Likewise, there are six losses but they each only occur 1/18 of the time and so we lose 1/3

third of the time by the switch strategy. The summary, then, is that the probability of winning if

you switch is 2/3 and, by the remark that you win with switching if and only if you lose with

sticking, it follows that you lose by sticking 2/3 of the time. And so sticking is really a bad

strategy and switching is the dominant way to go.

Now, in class, we back up this theoretical analysis. It's very logical but the question is, is it

true? And you can do statistical experiments and have students pick doors and goats and

prizes and, sure enough, it turns out that roughly 2/3 of the time, and closer and closer to 2/3

the more times you play the game, the switching strategy wins 2/3 of the time. So, the second

key idea in probability theory is that the outcomes may have different probabilities. They may



have different weights. Unlike the poker hand case, when we look more closely at a random

experiment with different outcomes, we will agree that, for various kinds of reasons of

symmetry or logic and so on, that it make sense to assign different probability weights to the

different outcomes. It's not the case that the outcomes have uniform probability, that they're all

equally likely.

So, to summarize, what happens, especially-- this example illustrates the confusion about of

probability theory that was engendered to even some serious experts-- but, in general,

intuition is very important, as in any subject, but it's also dangerous in probability theory.

Particularly, for beginners who aren't experienced about some of these traps that you can fall

into and so our proposal is that you be very wary of intuitive arguments. They're valuable but

you need another disciplined way to check them, and we propose that you stick with what we

call the four-part method when you're trying to devise a probability model for some random

experiment. So, the steps are, first, that you try to identify the outcomes of the random

experiment and this is where the tree structure comes up. If you try to model, step-by-step at

each stage of the tree, what the possible sub-steps are in the overall process that yields the

random outcome, that's where the tree comes in as we illustrated with Monty Hall.

The next thing to do is, among the outcomes, identify the ones that you consider to be of the

winning events or the winning outcomes or the outcomes in the event that you are concerned

about whether or not it happens. Getting two jacks, picking the door with the prize. So you

need to identify the target event whose probability you're interested in. We could call it the

winning event, the probability of winning. The third key step is to try to use the tree and logic of

it to assign probabilities to the outcomes and the fourth step, then, is, simply, to compute the

probability of the event which you do in a very straightforward way by basically adding up the

probabilities of each of the outcomes in the event. That is the four-step method. Now, this

Monty Hall tree that we came up with was very literal and wildly, unnecessarily complicated. So

let's take another look at that and a simpler argument that will lead us to the same conclusion

about how the Monty Hall game works, and we'll do that in the next video.


