
“mcs” — 2015/5/18 — 1:43 — page 173 — #181

6 Recursive Data Types
Recursive data types play a central role in programming, and induction is really all
about them.

Recursive data types are specified by recursive definitions, which say how to
construct new data elements from previous ones. Along with each recursive data
type there are recursive definitions of properties or functions on the data type. Most
importantly, based on a recursive definition, there is a structural induction method
for proving that all data of the given type have some property.

This chapter examines a few examples of recursive data types and recursively
defined functions on them:

✏ strings of characters,

✏ “balanced” strings of brackets,

✏ the nonnegative integers, and

✏ arithmetic expressions.

6.1 Recursive Definitions and Structural Induction

We’ll start off illustrating recursive definitions and proofs using the example of
character strings. Normally we’d take strings of characters for granted, but it’s
informative to treat them as a recursive data type. In particular, strings are a nice
first example because you will see recursive definitions of things that are easy to
understand or that you already know, so you can focus on how the definitions work
without having to figure out what they are for.

Definitions of recursive data types have two parts:

✏ Base case(s) specifying that some known mathematical elements are in the
data type, and

✏ Constructor case(s) that specify how to construct new data elements from
previously constructed elements or from base elements.

The definition of strings over a given character set, A, follows this pattern:

“mcs” — 2015/5/18 — 1:43 — page 174 — #182

174 Chapter 6 Recursive Data Types

Definition 6.1.1. Let A be a nonempty set called an alphabet, whose elements are
referred to as characters, letters, or symbols. The recursive data type, A⇤, of strings
over alphabet, A, are defined as follows:

✏ Base case: the empty string, �, is in A⇤.

✏ Constructor case: If a 2 A and s 2 A⇤, then the pair ha; si 2 A⇤.

So f0; 1g⇤ are the binary strings.
The usual way to treat binary strings is as sequences of 0’s and 1’s. For example,

we have identified the length-4 binary string 1011 as a sequence of bits, the 4-tuple
.1; 0; 1; 1/. But according to the recursive Definition 6.1.1, this string would be
represented by nested pairs, namely

h1; h0; h1; h1; �iiii :

These nested pairs are definitely cumbersome and may also seem bizarre, but they
actually reflect the way that such lists of characters would be represented in pro-
gramming languages like Scheme or Python, where ha; si would correspond to
cons.a; s/.

Notice that we haven’t said exactly how the empty string is represented. It really
doesn’t matter, as long as we can recognize the empty string and not confuse it with
any nonempty string.

Continuing the recursive approach, let’s define the length of a string.

Definition 6.1.2. The length, jsj, of a string, s, is defined recursively based on the
definition of s 2 A⇤:

Base case: j�j WWD 0.

Constructor case: j ha; si j WWD 1C jsj.

This definition of length follows a standard pattern: functions on recursive data
types can be defined recursively using the same cases as the data type definition.
Specifically, to define a function, f , on a recursive data type, define the value of
f for the base cases of the data type definition, then define the value of f in each
constructor case in terms of the values of f on the component data items.

Let’s do another example: the concatenation s � t of the strings s and t is the
string consisting of the letters of s followed by the letters of t . This is a per-
fectly clear mathematical definition of concatenation (except maybe for what to do
with the empty string), and in terms of Scheme/Python lists, s � t would be the list
append.s; t/. Here’s a recursive definition of concatenation.

“mcs” — 2015/5/18 — 1:43 — page 175 — #183

6.1. Recursive Definitions and Structural Induction 175

Definition 6.1.3. The concatenation s � t of the strings s; t 2 A⇤ is defined recur-
sively based on the definition of s 2 A⇤:

Base case:
� � t WWD t:

Constructor case:
ha; si � t WWD ha; s � ti :

6.1.1 Structural Induction
Structural induction is a method for proving that all the elements of a recursively
defined data type have some property. A structural induction proof has two parts
corresponding to the recursive definition:

✏ Prove that each base case element has the property.

✏ Prove that each constructor case element has the property, when the construc-
tor is applied to elements that have the property.

For example, we can verify the familiar fact that the length of the concatenation
of two strings is the sum of their lengths using structural induction:

Theorem 6.1.4. For all s; t 2 A⇤,

js � t j D jsj C jt j:

Proof. By structural induction on the definition of s 2 A⇤. The induction hypoth-
esis is

P.s/ WWD 8t 2 A⇤: js � t j D jsj C jt j:

Base case (s D �):

js � t j D j� � t j
D jt j (def �, base case)
D 0C jt j
D jsj C jt j (def length, base case)

“mcs” — 2015/5/18 — 1:43 — page 176 — #184

176 Chapter 6 Recursive Data Types

Constructor case: Suppose s WWDha; ri and assume the induction hypothesis, P.r/.
We must show that P.s/ holds:

js � t j D j ha; ri � t j
D j ha; r � ti j (concat def, constructor case)
D 1C jr � t j (length def, constructor case)
D 1C .jr j C jt j/ since P.r/ holds
D .1C jr j/C jt j
D j ha; ri j C jt j (length def, constructor case)
D jsj C jt j:

This proves that P.s/ holds as required, completing the constructor case. By struc-
tural induction we conclude that P.s/ holds for all strings s 2 A⇤. ⌅

This proof illustrates the general principle:

The Principle of Structural Induction.
Let P be a predicate on a recursively defined data type R. If

✏ P.b/ is true for each base case element, b 2 R, and

✏ for all two-argument constructors, c,

ŒP.r/ AND P.s/ç IMPLIES P.c.r; s//

for all r; s 2 R,
and likewise for all constructors taking other numbers of arguments,

then
P.r/ is true for all r 2 R:

6.1.2 One More Thing
The number, #c.s/, of occurrences of the character c 2 A in the string s has a
simple recursive definition based on the definition of s 2 A⇤:

Definition 6.1.5.

Base case: #c.�/ WWD 0.

“mcs” — 2015/5/18 — 1:43 — page 177 — #185

6.2. Strings of Matched Brackets 177

Constructor case:

if a c;
#c.ha; si c.s/

/
¤WWD

(

1C #c.s/ if a D c:

We’ll need the following lemma in the next section:

Lemma 6.1.6.
#c.s � t / D #c.s/C #c.t/:

The easy proof by structural induction is an exercise (Problem 6.7).

6.2 Strings of Matched Brackets

Let f] ; [g⇤ be the set of all strings of square brackets. For example, the following
two strings are in f] ; [g⇤:

[]] [[[[[]] and [[[]] []] [] (6.1)

A string, s 2 f] ; [g⇤, is called a matched string if its brackets “match up” in
the usual way. For example, the left hand string above is not matched because its
second right bracket does not have a matching left bracket. The string on the right
is matched.

We’re going to examine several different ways to define and prove properties
of matched strings using recursively defined sets and functions. These properties
are pretty straightforward, and you might wonder whether they have any particular
relevance in computer science. The honest answer is “not much relevance any
more.” The reason for this is one of the great successes of computer science, as
explained in the text box below.

“mcs” — 2015/5/18 — 1:43 — page 178 — #186

178 Chapter 6 Recursive Data Types

Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation
of effective programming language compilers was a central concern. A key aspect
in processing a program for compilation was expression parsing. One significant
problem was to take an expression like

x C y ⇤ z2 ⌅ y C 7

and put in the brackets that determined how it should be evaluated—should it be

ŒŒx C yç ⇤ z2 ⌅ yçC 7; or;

x C Œy ⇤ z2 ⌅ Œy C 7çç; or;

Œx C Œy ⇤ z2çç⌅ Œy C 7ç; or : : :‹

The Turing award (the “Nobel Prize” of computer science) was ultimately be-
stowed on Robert W. Floyd, for, among other things, discovering simple proce-
dures that would insert the brackets properly.

In the 70’s and 80’s, this parsing technology was packaged into high-level
compiler-compilers that automatically generated parsers from expression gram-
mars. This automation of parsing was so effective that the subject no longer
demanded attention. It had largely disappeared from the computer science cur-
riculum by the 1990’s.

The matched strings can be nicely characterized as a recursive data type:

Definition 6.2.1. Recursively define the set, RecMatch, of strings as follows:

✏ Base case: � 2 RecMatch.

✏ Constructor case: If s; t 2 RecMatch, then

[s] t 2 RecMatch:

Here [s] t refers to the concatenation of strings which would be written in full
as

[� .s � .] � t //:
From now on, we’ll usually omit the “�’s.”

Using this definition, � 2 RecMatch by the base case, so letting s D t D � in
the constructor case implies

[�] � D [] 2 RecMatch:

“mcs” — 2015/5/18 — 1:43 — page 179 — #187

6.2. Strings of Matched Brackets 179

Now,

[�] [] D [] [] 2 RecMatch (letting s D �; t D [])
[[]] � D [[]] 2 RecMatch (letting s D [] ; t D �)

[[]] [] 2 RecMatch (letting s D [] ; t D [])

are also strings in RecMatch by repeated applications of the constructor case; and
so on.

It’s pretty obvious that in order for brackets to match, there had better be an equal
number of left and right ones. For further practice, let’s carefully prove this from
the recursive definitions.

Lemma. Every string in RecMatch has an equal number of left and right brackets.

Proof. The proof is by structural induction with induction hypothesis

P.s/ WWD #[.s/ D #] .s/:

Base case: P.�/ holds because

#[.�/ D 0 D #] .�/

by the base case of Definition 6.1.5 of #c./.

Constructor case: By structural induction hypothesis, we assume P.s/ and P.t/

and must show P.[s] t /:

#[.[s] t / D #[.[/C #[.s/C #[.] /C #[.t/ (Lemma 6.1.6)

D 1C #[.s/C 0C #[.t/ (def #[./)

D 1C #] .s/C 0C #] .t/ (by P.s/ and P.t/)

D 0C #] .s/C 1C #] .t/

D #] .[/C #] .s/C #] .] /C #] .t/ (def #] ./)

D #] .[s] t / (Lemma 6.1.6)

This completes the proof of the constructor case. We conclude by structural induc-
tion that P.s/ holds for all s 2 RecMatch. ⌅

Warning: When a recursive definition of a data type allows the same element
to be constructed in more than one way, the definition is said to be ambiguous.
We were careful to choose an unambiguous definition of RecMatch to ensure that
functions defined recursively on its definition would always be well-defined. Re-
cursively defining a function on an ambiguous data type definition usually will not
work. To illustrate the problem, here’s another definition of the matched strings.

“mcs” — 2015/5/18 — 1:43 — page 180 — #188

180 Chapter 6 Recursive Data Types

Definition 6.2.2. Define the set, AmbRecMatch ✓ f] ; [g⇤ recursively as follows:

✏ Base case: � 2 AmbRecMatch,

✏ Constructor cases: if s; t 2 AmbRecMatch, then the strings [s] and st are
also in AmbRecMatch.

It’s pretty easy to see that the definition of AmbRecMatch is just another way
to define RecMatch, that is AmbRecMatch D RecMatch (see Problem 6.15). The
definition of AmbRecMatch is arguably easier to understand, but we didn’t use it
because it’s ambiguous, while the trickier definition of RecMatch is unambiguous.
Here’s why this matters. Let’s define the number of operations, f .s/, to construct
a matched string s recursively on the definition of s 2 AmbRecMatch:

f .�/ WWD 0; (f base case)
f .[s] / WWD 1C f .s/;

f .st/ WWD 1C f .s/C f .t/: (f concat case)

This definition may seem ok, but it isn’t: f .�/ winds up with two values, and
consequently:

0 D f .�/ (f base case))
D f .� � �/ (concat def, base case)
D 1C f .�/C f .�/ (f concat case);
D 1C 0C 0 D 1 (f base case):

This is definitely not a situation we want to be in!

6.3 Recursive Functions on Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.

Definition 6.3.1. The set, N, is a data type defined recursively as:

✏ 0 2 N.

✏ If n 2 N, then the successor, nC 1, of n is in N.

The point here is to make it clear that ordinary induction is simply the special
case of structural induction on the recursive Definition 6.3.1. This also justifies the
familiar recursive definitions of functions on the nonnegative integers.

“mcs” — 2015/5/18 — 1:43 — page 181 — #189

6.3. Recursive Functions on Nonnegative Integers 181

6.3.1 Some Standard Recursive Functions on N
Example 6.3.2. The factorial function. This function is often written “nä.” You will
see a lot of it in later chapters. Here, we’ll use the notation fac.n/:

✏ fac.0/ WWD 1.

✏ fac.nC 1/ WWD .nC 1/ � fac.n/ for n � 0.

Example 6.3.3. The Fibonacci numbers. Fibonacci numbers arose out of an effort
800 years ago to model population growth. They have a continuing fan club of
people captivated by their extraordinary properties (see Problems 5.8, 5.21, 5.26).
The nth Fibonacci number, fib, can be defined recursively by:

F.0/ WWD 0;

F.1/ WWD 1;

F.n/ WWD F.n � 1/C F.n � 2/ for n � 2.

Here the recursive step starts at n D 2 with base cases for 0 and 1. This is needed
since the recursion relies on two previous values.

What is F.4/? Well, F.2/ D F.1/C F.0/ D 1, F.3/ D F.2/C F.1/ D 2, so
F.4/ D 3. The sequence starts out 0; 1; 1; 2; 3; 5; 8; 13; 21; : : : .

Example 6.3.4. Summation notation. Let “S.n/” abbreviate the expression “
Pn

iD1 f .i/.”
We can recursively define S.n/ with the rules

✏ S.0/ WWD 0.

✏ S.nC 1/ WWD f .nC 1/C S.n/ for n � 0.

6.3.2 Ill-formed Function Definitions
There are some other blunders to watch out for when defining functions recursively.
The main problems come when recursive definitions don’t follow the recursive def-
inition of the underlying data type. Below are some function specifications that re-
semble good definitions of functions on the nonnegative integers, but really aren’t.

f1.n/ WWD 2C f1.n � 1/: (6.2)

This “definition” has no base case. If some function, f1, satisfied (6.2), so would a
function obtained by adding a constant to the value of f1. So equation (6.2) does
not uniquely define an f1.

“mcs” — 2015/5/18 — 1:43 — page 182 — #190

182 Chapter 6 Recursive Data Types

0;
f2.n/ WWD

(
if n D 0;

(6.3)
f2.nC 1/ otherwise:

This “definition” has a base case, but still doesn’t uniquely determine f2. Any
function that is 0 at 0 and constant everywhere else would satisfy the specification,
so (6.3) also does not uniquely define anything.

In a typical programming language, evaluation of f2.1/ would begin with a re-
cursive call of f2.2/, which would lead to a recursive call of f2.3/, . . . with recur-
sive calls continuing without end. This “operational” approach interprets (6.3) as
defining a partial function, f2, that is undefined everywhere but 0.

8̂
<0; if n is divisible by 2,

f3.n/ WWD :̂1; if n is divisible by 3, (6.4)
2; otherwise.

This “definition” is inconsistent: it requires f3.6/ D 0 and f3.6/ D 1, so (6.4)
doesn’t define anything.

Mathematicians have been wondering about this function specification, known
as the Collatz conjecture for a while:

f4.n/ WWD

8̂
<1; if n 1;

:̂f4.n=2/ if n > 1 is even; (6.5)
f4.3nC 1/ if n > 1 is odd:

For example, f4.3/ D 1 because

f4.3/ WWDf4.10/ WWDf4.5/ WWDf4.16/ WWDf4.8/ WWDf4.4/ WWDf4.2/ WWDf4.1/ WWD1:

The constant function equal to 1 will satisfy (6.5), but it’s not known if another
function does as well. The problem is that the third case specifies f4.n/ in terms
of f4 at arguments larger than n, and so cannot be justified by induction on N. It’s
known that any f4 satisfying (6.5) equals 1 for all n up to over 1018.

A final example is the Ackermann function, which is an extremely fast-growing
function of two nonnegative arguments. Its inverse is correspondingly slow-growing—
it grows slower than log n, log log n, log log log n, . . . , but it does grow unboundly.
This inverse actually comes up analyzing a useful, highly efficient procedure known
as the Union-Find algorithm. This algorithm was conjectured to run in a number
of steps that grew linearly in the size of its input, but turned out to be “linear”

“mcs” — 2015/5/18 — 1:43 — page 183 — #191

6.4. Arithmetic Expressions 183

but with a slow growing coefficient nearly equal to the inverse Ackermann func-
tion. This means that pragmatically, Union-Find is linear, since the theoretically
growing coefficient is less than 5 for any input that could conceivably come up.

The Ackermann function can be defined recursively as the function, A, given by
the following rules:

A.m; n/ D 2n; if m D 0 or n 1; (6.6)
A.m; n/ D A.m � 1; A.m; n � 1//; otherwise: (6.7)

Now these rules are unusual because the definition of A.m; n/ involves an eval-
uation of A at arguments that may be a lot bigger than m and n. The definitions
of f2 above showed how definitions of function values at small argument values in
terms of larger one can easily lead to nonterminating evaluations. The definition of
the Ackermann function is actually ok, but proving this takes some ingenuity (see
Problem 6.17).

6.4 Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions
like 3x2 C 2x C 1 involving only one variable, “x.” We’ll refer to the data type of
such expressions as Aexp. Here is its definition:

Definition 6.4.1.

✏ Base cases:

– The variable, x, is in Aexp.

– The arabic numeral, k, for any nonnegative integer, k, is in Aexp.

✏ Constructor cases: If e; f 2 Aexp, then

– [e + f] 2 Aexp. The expression [e + f] is called a sum. The Aexp’s
e and f are called the components of the sum; they’re also called the
summands.

“mcs” — 2015/5/18 — 1:43 — page 184 — #192

184 Chapter 6 Recursive Data Types

– [e ⇤ f] 2 Aexp. The expression [e ⇤ f] is called a product. The
Aexp’s e and f are called the components of the product; they’re also
called the multiplier and multiplicand.

– - [e] 2 Aexp. The expression - [e] is called a negative.

Notice that Aexp’s are fully bracketed, and exponents aren’t allowed. So the
Aexp version of the polynomial expression 3x2C2xC1 would officially be written
as

[[3 ⇤ [x ⇤ x]] + [[2 ⇤ x] + 1]] : (6.8)

These brackets and ⇤’s clutter up examples, so we’ll often use simpler expressions
like “3x2C2xC1” instead of (6.8). But it’s important to recognize that 3x2C2xC1

is not an Aexp; it’s an abbreviation for an Aexp.

6.4.1 Evaluation and Substitution with Aexp’s
Evaluating Aexp’s

Since the only variable in an Aexp is x, the value of an Aexp is determined by the
value of x. For example, if the value of x is 3, then the value of 3x2 C 2x C 1

is 34. In general, given any Aexp, e, and an integer value, n, for the variable, x,
we can evaluate e to finds its value, eval.e; n/. It’s easy, and useful, to specify this
evaluation process with a recursive definition.

Definition 6.4.2. The evaluation function, eval W Aexp ⇥ Z! Z, is defined recur-
sively on expressions, e 2 Aexp, as follows. Let n be any integer.

✏ Base cases:

eval.x; n/ WWD n; (value of variable x is n.) (6.9)
eval.k; n/ WWD k; (value of numeral k is k, regardless of x.) (6.10)

✏ Constructor cases:

eval.[e1 + e2] ; n/ WWD eval.e1; n/C eval.e2; n/; (6.11)
eval.[e1 ⇤ e2] ; n/ WWD eval.e1; n/ � eval.e2; n/; (6.12)

eval.- [e1] ; n/ WWD � eval.e1; n/: (6.13)

“mcs” — 2015/5/18 — 1:43 — page 185 — #193

6.4. Arithmetic Expressions 185

For example, here’s how the recursive definition of eval would arrive at the value
of 3C x2 when x is 2:

eval.[3 + [x ⇤ x]] ; 2/ D eval.3; 2/C eval.[x ⇤ x] ; 2/ (by Def 6.4.2.6.11)
D 3C eval.[x ⇤ x] ; 2/ (by Def 6.4.2.6.10)
D 3C .eval.x; 2/ � eval.x; 2// (by Def 6.4.2.6.12)
D 3C .2 � 2/ (by Def 6.4.2.6.9)
D 3C 4 D 7:

Substituting into Aexp’s

Substituting expressions for variables is a standard operation used by compilers
and algebra systems. For example, the result of substituting the expression 3x for
x in the expression x.x � 1/ would be 3x.3x � 1/. We’ll use the general notation
subst.f; e/ for the result of substituting an Aexp, f , for each of the x’s in an Aexp,
e. So as we just explained,

subst.3x; x.x � 1// D 3x.3x � 1/:

This substitution function has a simple recursive definition:

Definition 6.4.3. The substitution function from Aexp ⇥ Aexp to Aexp is defined
recursively on expressions, e 2 Aexp, as follows. Let f be any Aexp.

✏ Base cases:

subst.f; x/ WWD f; (subbing f for variable, x, just gives f) (6.14)
subst.f;k/ WWD k (subbing into a numeral does nothing.) (6.15)

✏ Constructor cases:

subst.f; [e1 + e2] / WWD [subst.f; e1/ + subst.f; e2/] (6.16)
subst.f; [e1 ⇤ e2] / WWD [subst.f; e1/ ⇤ subst.f; e2/] (6.17)

subst.f; - [e1] / WWD - [subst.f; e1/] : (6.18)

“mcs” — 2015/5/18 — 1:43 — page 186 — #194

186 Chapter 6 Recursive Data Types

Here’s how the recursive definition of the substitution function would find the
result of substituting 3x for x in the x.x � 1/:

subst.3x; x.x � 1//

D subst.[3 ⇤ x] ; [x ⇤ [x + - [1]]] / (unabbreviating)
D [subst.[3 ⇤ x] ; x/ ⇤

subst.[3 ⇤ x] ; [x + - [1]] /] (by Def 6.4.3 6.17)
D [[3 ⇤ x] ⇤ subst.[3 ⇤ x] ; [x + - [1]] /] (by Def 6.4.3 6.14)
D [[3 ⇤ x] ⇤ [subst.[3 ⇤ x] ; x/

+ subst.[3 ⇤ x] ; - [1] /]] (by Def 6.4.3 6.16)
D [[3 ⇤ x] ⇤ [[3 ⇤ x] + - [subst.[3 ⇤ x] ; 1/]]] (by Def 6.4.3 6.14 & 6.18)
D [[3 ⇤ x] ⇤ [[3 ⇤ x] + - [1]]] (by Def 6.4.3 6.15)
D 3x.3x � 1/ (abbreviation)

Now suppose we have to find the value of subst.3x; x.x � 1// when x D 2.
There are two approaches.

First, we could actually do the substitution above to get 3x.3x � 1/, and then
we could evaluate 3x.3x � 1/ when x D 2, that is, we could recursively calculate
eval.3x.3x � 1/; 2/ to get the final value 30. This approach is described by the
expression

eval.subst.3x; x.x � 1//; 2/ (6.19)

In programming jargon, this would be called evaluation using the Substitution
Model. With this approach, the formula 3x appears twice after substitution, so
the multiplication 3 � 2 that computes its value gets performed twice.

The other approach is called evaluation using the Environment Model. Namely,
to compute the value of (6.19), we evaluate 3x when x D 2 using just 1 multiplica-
tion to get the value 6. Then we evaluate x.x� 1/ when x has this value 6 to arrive
at the value 6 � 5 D 30. This approach is described by the expression

eval.x.x � 1/; eval.3x; 2//: (6.20)

The Environment Model only computes the value of 3x once, and so it requires one
fewer multiplication than the Substitution model to compute (6.20). This is a good
place to stop and work this example out yourself (Problem 6.18).

But how do we know that these final values reached by these two approaches,
that is, the final integer values of (6.19) and (6.20), agree? In fact, we can prove
pretty easily that these two approaches always agree by structural induction on the
definitions of the two approaches. More precisely, what we want to prove is

“mcs” — 2015/5/18 — 1:43 — page 187 — #195

6.4. Arithmetic Expressions 187

Theorem 6.4.4. For all expressions e; f 2 Aexp and n 2 Z,

eval.subst.f; e/; n/ D eval.e; eval.f; n//: (6.21)

Proof. The proof is by structural induction on e.1

Base cases:

✏ Case[x]

The left hand side of equation (6.21) equals eval.f; n/ by this base case in
Definition 6.4.3 of the substitution function, and the right hand side also
equals eval.f; n/ by this base case in Definition 6.4.2 of eval.

✏ Case[k].

The left hand side of equation (6.21) equals k by this base case in Defini-
tions 6.4.3 and 6.4.2 of the substitution and evaluation functions. Likewise,
the right hand side equals k by two applications of this base case in the Def-
inition 6.4.2 of eval.

Constructor cases:

✏ Case[[e1 + e2]]

By the structural induction hypothesis (6.21), we may assume that for all
f 2 Aexp and n 2 Z,

eval.subst.f; ei /; n/ D eval.ei ; eval.f; n// (6.22)

for i D 1; 2. We wish to prove that

eval.subst.f; [e1 + e2] /; n/ D eval.[e1 + e2] ; eval.f; n// (6.23)

The left hand side of (6.23) equals

eval.[subst.f; e1/ + subst.f; e2/] ; n/

by Definition 6.4.3.6.16 of substitution into a sum expression. But this equals

eval.subst.f; e1/; n/C eval.subst.f; e2/; n/

1This is an example of why it’s useful to notify the reader what the induction variable is—in this
case it isn’t n.

“mcs” — 2015/5/18 — 1:43 — page 188 — #196

188 Chapter 6 Recursive Data Types

by Definition 6.4.2.(6.11) of eval for a sum expression. By induction hypoth-
esis (6.22), this in turn equals

eval.e1; eval.f; n//C eval.e2; eval.f; n//:

Finally, this last expression equals the right hand side of (6.23) by Defini-
tion 6.4.2.(6.11) of eval for a sum expression. This proves (6.23) in this case.

✏ Case[[e1 ⇤ e2]] Similar.

✏ Case[�[e1]] Even easier.

This covers all the constructor cases, and so completes the proof by structural
induction.

⌅

6.5 Induction in Computer Science

Induction is a powerful and widely applicable proof technique, which is why we’ve
devoted two entire chapters to it. Strong induction and its special case of ordinary
induction are applicable to any kind of thing with nonnegative integer sizes—which
is an awful lot of things, including all step-by-step computational processes.

Structural induction then goes beyond number counting, and offers a simple,
natural approach to proving things about recursive data types and recursive compu-
tation.

In many cases, a nonnegative integer size can be defined for a recursively defined
datum, such as the length of a string, or the number of operations in an Aexp. It is
then possible to prove properties of data by ordinary induction on their size. But
this approach often produces more cumbersome proofs than structural induction.

In fact, structural induction is theoretically more powerful than ordinary induc-
tion. However, it’s only more powerful when it comes to reasoning about infinite
data types—like infinite trees, for example—so this greater power doesn’t matter in
practice. What does matter is that for recursively defined data types, structural in-
duction is a simple and natural approach. This makes it a technique every computer
scientist should embrace.

“mcs” — 2015/5/18 — 1:43 — page 189 — #197

6.5. Induction in Computer Science 189

Problems for Section 6.1

Class Problems
Problem 6.1.
Prove that for all strings r; s; t 2 A⇤

.r � s/ � t D r � .s � t /:

Problem 6.2.
The reversal of a string is the string written backwards, for example, rev.abcde/ D
edcba.
(a) Give a simple recursive definition of rev.s/ based on the recursive defini-

tion 6.1.1 of s 2 A⇤ and using the concatenation operation 6.1.3.

(b) Prove that
rev.s � t / D rev.t/ � rev.s/;

for all strings s; t 2 A⇤.

Problem 6.3.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable
defined recursively as follows:

Base cases:

✏ The identity function, id.x/ WWD x is an F18,

✏ any constant function is an F18,

✏ the sine function is an F18,

Constructor cases:
If f; g are F18’s, then so are

1. f C g, fg, 2g ,

2. the inverse function f �1,

3. the composition f ı g.

(a) Prove that the function 1=x is an F18.

Warning: Don’t confuse 1=x D x�1 with the inverse id�1 of the identity function
id.x/. The inverse id�1 is equal to id.

“mcs” — 2015/5/18 — 1:43 — page 190 — #198

190 Chapter 6 Recursive Data Types

(b) Prove by Structural Induction on this definition that the Elementary 18.01
Functions are closed under taking derivatives. That is, show that if f .x/ is an F18,
then so is f 0 WWD df =dx. (Just work out 2 or 3 of the most interesting constructor
cases; you may skip the less interesting ones.)

Problem 6.4.
Here is a simple recursive definition of the set, E, of even integers:

Definition. Base case: 0 2 E.
Constructor cases: If n 2 E, then so are nC 2 and �n.

Provide similar simple recursive definitions of the following sets:
(a) The set S WWD f2k3m5n 2 N j k; m; n 2 Ng.

(b) The set T WWD f2k32kCm5mCn 2 N j k; m; n 2 Ng.

(c) The set L WWD f.a; b/ 2 Z2 j .a � b/ is a multiple of 3g.
Let L0 be the set defined by the recursive definition you gave for L in the previous

part. Now if you did it right, then L0 D L, but maybe you made a mistake. So let’s
check that you got the definition right.
(d) Prove by structural induction on your definition of L0 that

L0 ✓ L:

(e) Confirm that you got the definition right by proving that

L ✓ L0:

(f) See if you can give an unambiguous recursive definition of L.

Problem 6.5.

Definition. The recursive data type, binary-2PTG, of binary trees with leaf labels,
L, is defined recursively as follows:

✏ Base case: hleaf; li 2 binary-2PTG, for all labels l 2 L.

✏ Constructor case: If G1; G2 2 binary-2PTG, then

hbintree; G1; G2i 2 binary-2PTG:

“mcs” — 2015/5/18 — 1:43 — page 191 — #199

6.5. Induction in Computer Science 191

The size, jGj, of G 2 binary-2PTG is defined recursively on this definition by:

✏ Base case:
j hleaf; li j WWD 1; for all l 2 L:

✏ Constructor case:

j hbintree; G1; G2i j WWD jG1j C jG2j C 1:

For example, the size of the binary-2PTG, G, pictured in Figure 6.1, is 7.

G

G11
win

G1,2
win

lose win

Figure 6.1 A picture of a binary tree G.

(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PTG,
G, pictured in Figure 6.1.

The value of flatten.G/ for G 2 binary-2PTG is the sequence of labels in L of
the leaves of G. For example, for the binary-2PTG, G, pictured in Figure 6.1,

flatten.G/ D .win;lose;win;win/:

(b) Give a recursive definition of flatten. (You may use the operation of concate-
nation (append) of two sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

2 � length.flatten.G// D jGj C 1: (6.24)

“mcs” — 2015/5/18 — 1:43 — page 192 — #200

192 Chapter 6 Recursive Data Types

Homework Problems
Problem 6.6.
Let m; n be integers, not both zero. Define a set of integers, Lm;n, recursively as
follows:

✏ Base cases: m; n 2 Lm;n.

✏ Constructor cases: If j; k 2 Lm;n, then

1. �j 2 Lm;n,

2. j C k 2 Lm;n.

Let L be an abbreviation for Lm;n in the rest of this problem.
(a) Prove by structural induction that every common divisor of m and n also di-

vides every member of L.

(b) Prove that any integer multiple of an element of L is also in L.

(c) Show that if j; k 2 L and k ¤ 0, then rem.j; k/ 2 L.

(d) Show that there is a positive integer g 2 L which divides every member of L.
Hint: The least positive integer in L.

(e) Conclude that g D GCD.m; n/ for g from part (d).

Problem 6.7.

Definition. Define the number, #c.s/, of occurrences of the character c 2 A in the
string s recursively on the definition of s 2 A⇤:

base case: #c.�/ WWD 0.
constructor case:

.s
#c.ha; si WWD

(
#c / if a ¤ c;

/
1C #c.s/ if a D c:

Prove by structural induction that for all s; t 2 A⇤ and c 2 A

#c.s � t / D #c.s/C #c.t/:

“mcs” — 2015/5/18 — 1:43 — page 193 — #201

6.5. Induction in Computer Science 193

Figure 6.2 Constructing the Koch Snowflake.

Problem 6.8.
Fractals are an example of mathematical objects that can be defined recursively.
In this problem, we consider the Koch snowflake. Any Koch snowflake can be
constructed by the following recursive definition.

✏ Base case: An equilateral triangle with a positive integer side length is a
Koch snowflake.

✏ Constructor case: Let K be a Koch snowflake, and let l be a line segment
on the snowflake. Remove the middle third of l , and replace it with two line
segments of the same length as is done in Figure 6.2

The resulting figure is also a Koch snowflake.

Provpe by structural induction that the area inside any Koch snowflake is of the
form q 3, where q is a rational number.

Problem 6.9.
Let L be some convenient set whose elements will be called labels. The labeled
binary trees, LBT’s, are defined recursively as follows:

Definition. Base case: if l is a label, then hl;leafi is an LBT, and

Constructor case: if B and C are LBT’s, then hl; B; C i is an LBT.

The leaf-labels and internal-labels of an LBT are defined recursively in the ob-
vious way:

Definition. Base case: The set of leaf-labels of the LBT hl;leafi is flg, and its
set of internal-labels is the empty set.

Constructor case: The set of leaf labels of the LBT hl; B; C i is the union of the
leaf-labels of B and of C ; the set of internal-labels is the union of flg and the sets
of internal-labels of B and of C .

The set of labels of an LBT is the union of its leaf- and internal-labels.
The LBT’s with unique labels are also defined recursively:

“mcs” — 2015/5/18 — 1:43 — page 194 — #202

194 Chapter 6 Recursive Data Types

Definition. Base case: The LBT hl;leafi has unique labels.

Constructor case: If B and C are LBT’s with unique labels, no label of B is a
label C and vice-versa, and l is not a label of B or C , then hl; B; C i has unique
labels.

If B is an LBT, let nB be the number of distinct internal-labels appearing in B

and fB be the number of distinct leaf labels of B . Prove by structural induction
that

fB D nB C 1 (6.25)

for all LBT’s B with unique labels. This equation can obviously fail if labels are
not unique, so your proof had better use uniqueness of labels at some point; be sure
to indicate where.

Exam Problems

Problem 6.10.
The Arithmetic Trig Functions (Atrig’s) are the set of functions of one real variable
defined recursively as follows:

Base cases:

✏ The identity function, id.x/ WWD x is an Atrig,

✏ any constant function is an Atrig,

✏ the sine function is an Atrig,

Constructor cases:
If f; g are Atrig’s, then so are

1. f C g

2. f � g

3. the composition f ı g.

Prove by structural induction on this definition that if f .x/ is an Atrig, then so is
f 0 WWD df =dx.

Problem 6.11.

“mcs” — 2015/5/18 — 1:43 — page 195 — #203

6.5. Induction in Computer Science 195

Definition. The set RAF of rational functions of one real variable is the set of
functions defined recursively as follows:

Base cases:

✏ The identity function, id.r/ WWD r for r 2 R (the real numbers), is an RAF,

✏ any constant function on R is an RAF.

Constructor cases: If f; g are RAF’s, then so is f ~ g, where ~ is one of the
operations

1. addition,C,

2. multiplication, �, and

3. division =.

(a) Prove by structural induction that RAF is closed under composition. That is,
using the induction hypothesis,

P.h/ WWD 8g 2 RAF : h ı g 2 RAF; (6.26)

prove that P.h/ holds for all h 2 RAF. Make sure to indicate explicitly

✏ each of the base cases, and

✏ each of the constructor cases. Hint: One proof in terms of ~ covers all three
cases.

(b) Briefly indicate where a proof would break down using the very similar induc-
tion hypothesis

Q.g/ WWD 8h 2 RAF : h ı g 2 RAF :

Problems for Section 6.2

Practice Problems
Problem 6.12.
Define the sets F1 and F2 recursively:

✏ F1:

– 5 2 F1,

– if n 2 F1, then 5n 2 F1.

“mcs” — 2015/5/18 — 1:43 — page 196 — #204

196 Chapter 6 Recursive Data Types

✏ F2:

– 5 2 F2,

– if n; m 2 F1, then nm 2 F2.

(a) Show that one of these definitions is technically ambiguous. (Remember that
“ambiguous recursive definition” has a technical mathematical meaning which does
not imply that the ambiguous definition is unclear.)

(b) Briefly explain what advantage unambiguous recursive definitions have over
ambiguous ones.

(c) A way to prove that F1 D F2, is to show firat that F1 ✓ F2 and second that
F2 ✓ F1. One of these containments follows easily by structural induction. Which
one? What would be the induction hypothesis? (You do not need to complete a
proof.)

Problem 6.13. (a) To prove that the set RecMatch, of matched strings of Defini-
tion 6.2.1 equals the set AmbRecMatch of ambiguous matched strings of Defini-
tion 6.2.2, you could first prove that

8r 2 RecMatch: r 2 AmbRecMatch;

and then prove that

8u 2 AmbRecMatch: u 2 RecMatch:

Of these two statements, circle the one that would be simpler to prove by structural
induction directly from the definitions.

(b) Suppose structural induction was being used to prove that AmbRecMatch ✓
RecMatch. Circle the one predicate below that would fit the format for a structural
induction hypothesis in such a proof.

✏ P0.n/ WWD jsj n IMPLIES s 2 RecMatch.

✏ P1.n/ WWD jsj n IMPLIES s 2 AmbRecMatch.

✏ P2.s/ WWD s 2 RecMatch.

✏ P3.s/ WWD s 2 AmbRecMatch.

✏ P4.s/ WWD .s 2 RecMatch IMPLIES s 2 AmbRecMatch/.

“mcs” — 2015/5/18 — 1:43 — page 197 — #205

6.5. Induction in Computer Science 197

(c) The recursive definition AmbRecMatch is ambiguous because it allows the
s � t constructor to apply when s or t is the empty string. But even fixing that,
ambiguity remains. Demonstrate this by giving two different derivations for the
string ”[] [] [] according to AmbRecMatch but only using the s � t constructor
when s ¤ � and t ¤ �.

Class Problems
Problem 6.14.
Let p be the string [] . A string of brackets is said to be erasable iff it can be
reduced to the empty string by repeatedly erasing occurrences of p. For example,
here’s how to erase the string [[[]] []] [] :

[[[]] []] [] ! [[]] ! [] ! �:

On the other hand the string []] [[[[[]] is not erasable because when we try to
erase, we get stuck:] [[[:

[]] [[[[[]] !] [[[[] !] [[[6!

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the
recursive data type of strings of matched brackets given in Definition 6.2.1
(a) Use structural induction to prove that

RecMatch ✓ Erasable:

(b) Supply the missing parts (labeled by “(*)”) of the following proof that

Erasable ✓ RecMatch:

Proof. We prove by strong induction that every length n string in Erasable is also
in RecMatch. The induction hypothesis is

P.n/ WWD 8x 2 Erasable: jxj D n IMPLIES x 2 RecMatch:

Base case:

(*) What is the base case? Prove that P is true in this case.

Inductive step: To prove P.nC 1/, suppose jxj D nC 1 and x 2 Erasable. We
need to show that x 2 RecMatch.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single
occurrence of p in z.

“mcs” — 2015/5/18 — 1:43 — page 198 — #206

198 Chapter 6 Recursive Data Types

Since x 2 Erasable and has positive length, there must be an erase, y 2 Erasable,
of x. So jyj D n � 1 � 0, and since y 2 Erasable, we may assume by induction
hypothesis that y 2 RecMatch.

Now we argue by cases:

Case (y is the empty string):

(*) Prove that x 2 RecMatch in this case.

Case (y D [s] t for some strings s; t 2 RecMatch): Now we argue by subcases.

✏ Subcase(x D py):
(*) Prove that x 2 RecMatch in this subcase.

✏ Subcase (x is of the form [s0] t where s is an erase of s0):
Since s 2 RecMatch, it is erasable by part (b), which implies that s0 2
Erasable. But js0j < jxj, so by induction hypothesis, we may assume that
s0 2 RecMatch. This shows that x is the result of the constructor step of
RecMatch, and therefore x 2 RecMatch.

✏ Subcase (x is of the form [s] t 0 where t is an erase of t 0):
(*) Prove that x 2 RecMatch in this subcase.

(*) Explain why the above cases are sufficient.

This completes the proof by strong induction on n, so we conclude that P.n/ holds
for all n 2 N. Therefore x 2 RecMatch for every string x 2 Erasable. That is,
Erasable ✓ RecMatch. Combined with part (a), we conclude that

Erasable D RecMatch:

⌅

Problem 6.15. (a) Prove that the set RecMatch, of matched strings of Definition 6.2.1
is closed under string concatenation. Namely, if s; t 2 RecMatch, then s � t 2
RecMatch.

(b) Prove AmbRecMatch ✓ RecMatch, where AmbRecMatch is the set of am-
biguous matched strings of Definition 6.2.2.

(c) Prove that RecMatch D AmbRecMatch.

“mcs” — 2015/5/18 — 1:43 — page 199 — #207

6.5. Induction in Computer Science 199

Homework Problems
Problem 6.16.
One way to determine if a string has matching brackets, that is, if it is in the set,
RecMatch, of Definition 6.2.1 is to start with 0 and read the string from left to right,
adding 1 to the count for each left bracket and subtracting 1 from the count for each
right bracket. For example, here are the counts for two sample strings:

[]] [[[[[]]]]
0 1 0 �1 0 1 2 3 4 3 2 1 0

[[[]] []] []
0 1 2 3 2 1 2 1 0 1 0

A string has a good count if its running count never goes negative and ends with 0.
So the second string above has a good count, but the first one does not because its
count went negative at the third step. Let

GoodCount WWD fs 2 f] ; [g⇤ j s has a good countg:

The empty string has a length 0 running count we’ll take as a good count by
convention, that is, � 2 GoodCount. The matched strings can now be characterized
precisely as this set of strings with good counts.
(a) Prove that GoodCount contains RecMatch by structural induction on the defi-

nition of RecMatch.

(b) Conversely, prove that RecMatch contains GoodCount.

Hint: By induction on the length of strings in GoodCount. Consider when the
running count equals 0 for the second time.

Problems for Section 6.3

Homework Problems
Problem 6.17.
One version of the the Ackermann function, A W N2 ! N, is defined recursively by
the following rules:

A.m; n/ WWD 2n; if m D 0 or n 1 (A-base)
A.m; n/ WWD A.m � 1; A.m; n � 1//; otherwise: (AA)

“mcs” — 2015/5/18 — 1:43 — page 200 — #208

200 Chapter 6 Recursive Data Types

Prove that if B W N2 ! N is a partial function that satisfies this same definition,
then B is total and B D A.

Problems for Section 6.4

Practice Problems
Problem 6.18. (a) Write out the evaluation of

eval.subst.3x; x.x � 1//; 2/

according to the Environment Model and the Substitution Model, indicating where
the rule for each case of the recursive definitions of eval.; / and ŒWD] or substitution
is first used. Compare the number of arithmetic operations and variable lookups.

(b) Describe an example along the lines of part (a) where the Environment Model
would perform 6 fewer multiplications than the Substitution model. You need not
carry out the evaluations.

(c) Describe an example along the lines of part (a) where the Substitution Model
would perform 6 fewer multiplications than the Environment model. You need not
carry out the evaluations.

Homework Problems
Problem 6.19. (a) Give a recursive definition of a function erase.e/ that erases all
the symbols in e 2 Aexp but the brackets. For example

erase.[[3 ⇤ [x ⇤ x]] + [[2 ⇤ x] + 1]] / D [[[]] [[2 ⇤ x] + 1]] :

(b) Prove that erase.e/ 2 RecMatch for all e 2 Aexp.

(c) Give an example of a small string s 2 RecMatch such that [s] ¤ erase.e/ for
any e 2 Aexp.

v

Problem 6.20.
We’re going to characterize a large category of games as a recursive data type and
then prove, by structural induction, a fundamental theorem about game strategies.
The games we’ll consider are known as deterministic games of perfect information,

“mcs” — 2015/5/18 — 1:43 — page 201 — #209

6.5. Induction in Computer Science 201

because at each move, the complete game situation is known to the players, and this
information completely determines how the rest of the game can be played. Games
like chess, checkers, GO, and tic-tac-toe fit this description. In contrast, most card
games do not fit, since card players usually do not know exactly what cards belong
to the other players. Neither do games involving random features like dice rolls,
since a player’s move does not uniquely determine what happens next.

Chess counts as a deterministic game of perfect information because at any point
of play, both players know whose turn it is to move and the location of every chess
piece on the board.2 At the start of the game, there are 20 possible first moves:
the player with the White pieces can move one of his eight pawns forward 1 or 2
squares or one of his two knights forward and left or forward and right. For the
second move, the Black player can make one of the 20 corresponding moves of
his own pieces. The White player would then make the third move, but now the
number of possible third moves depends on what the first two moves happened to
be.

A nice way to think of these games is to regard each game situation as a game
in its own right. For example, after five moves in a chess game, we think of the
players as being at the start of a new “chess” game determined by the current board
position and the fact that it is Black’s turn to make the next move.

At the end of a chess game, we might assign a score of 1 if the White player
won, �1 if White lost, and 0 if the game ended in a stalemate (a tie). Now we can
say that White’s objective is to maximize the final score and Black’s objective is
to minimize it. We might also choose to score the game in a more elaborate way,
taking into account not only who won, but also how many moves the game took, or
the final board configuration.

This leads to an elegant abstraction of this kind of game. We suppose there are
two players, called the max-player and the min-player, whose aim is, respectively,
to maximize and minimize the final score. A game will specify its set of possible
first moves, each of which will simply be another game. A game with no possible
moves is called an ended game, and will just have a final score. Strategically, all
that matters about an ended game is its score. If a game is not ended, it will have a
label max or min indicating which player is supposed to move first.

This motivates the following formal definition:

Definition. Let V be a nonempty set of real numbers. The class VG of V -valued
deterministic max-min games of perfect information is defined recursively as fol-

2In order to prevent the possibility of an unending game, chess rules specify a limit on the number
of moves, or a limit on the number of times a given board postion may repeat. So the number of
moves or the number of position repeats would count as part of the game situation known to both
players.

“mcs” — 2015/5/18 — 1:43 — page 202 — #210

202 Chapter 6 Recursive Data Types

lows:

Base case: A value v 2 V is a VG, and is called an ended game.

Constructor case: If fG0; G1; : : :g is a nonempty set of VG’s, and a is a label
equal to max or min, then

G WWD .a; fG0; G1; : : :g/

is a VG. Each game Gi is called a possible first move of G.

In all the games like this that we’re familiar with, there are only a finite number
of possible first moves. It’s worth noting that the definition of VG does not require
this. Since finiteness is not needed to prove any of the results below, it would ar-
guably be misleading to assume it. Later, we’ll suggest how games with an infinite
number of possible first moves might come up.

A play of a game is a sequence of legal moves that either goes on forever or
finishes with an ended game. More formally:

Definition. A play of a game G 2 VG is defined recursively on the definition of
VG:

Base case: (G is an ended game.) Then the length one sequence .G/ is a play of
G.

Constructor case: (G is not an ended game.) Then a play of G is a sequence that
starts with a possible first move, Gi , of G and continues with the elements of a play
of Gi .

If a play does not go on forever, its payoff is defined to be the value it ends with.

Let’s first rule out the possibility of playing forever. Namely, every play will
have a payoff.
(a) Prove that every play of a G 2 VG is a finite sequence that ends with a value

in V . Hint: By structural induction on the definition of VG.
A strategy for a game is a rule that tells a player which move to make when it’s

his turn. Formally:

Definition. If a is one of the labels max or min, then an a-strategy is a function
s W VG! VG such that

s.G/ is

(
a first move of G if G has label a,
undefined; otherwise.

“mcs” — 2015/5/18 — 1:43 — page 203 — #211

6.5. Induction in Computer Science 203

Any pair of strategies for the two players determines a unique play of a game,
and hence a unique payoff, in an obvious way. Namely, when it is a player’s turn
to move in a game G, he chooses the move specified by his strategy. A strategy
for the max-player is said to ensure payoff v when, paired with any strategy for the
min-player, the resulting payoff is at least v. Dually, a strategy for the min-player
caps payoff at v when, paired with any strategy for the max-player, the resulting
payoff is at most v.

Assuming for simplicity that the set V of possible values of a game is finite,
the WOP (Section 2.4) implies there will be a strategy for the max-player that en-
sures the largest possible payoff; this is called the max-ensured-value of the game.
Dually, there will also be a strategy for the min-player that caps the payoff at the
smallest possible value, which is called the min-capped-value of the game.

The max-ensured-value of course cannot be larger than the min-capped-value. A
unique value can be assigned to a game when these two values agree:

Definition. If the max-ensured-value and min-capped-value of a game are equal,
their common value is called the value of the game.

So if both players play optimally in a game with that has a value, v, then there
is actually no point in playing. Since the payoff is ensured to be at least v and is
also capped to be at most v, it must be exactly v. So the min-player may as well
skip playing and simply pay v to the max-player (a negative payment means the
max-player is paying the min-player).

The punch line of our story is that the max-ensured-value and the min-capped-
value are always equal.

Theorem (Fundamental Theorem for Deterministic Min-Max Games of Perfect
Information). Let V be a finite set of real numbers. Every V -valued deterministic
max-min game of perfect information has a value.

(b) Prove this Fundamental Theorem for VG’s by structural induction.

(c) Conclude immediately that in chess, there is a winning strategy for White, or
a winning strategy for Black, or both players have strategies that guarantee at least
a stalemate. (The only difficulty is that no one knows which case holds.)

So where do we come upon games with an infinite number of first moves? Well,
suppose we play a tournament of n chess games for some positive integer n. This
tournament will be a VG if we agree on a rule for combining the payoffs of the n

individual chess games into a final payoff for the whole tournament.
There still are only a finite number of possible moves at any stage of the n-game

chess tournament, but we can define a meta-chess-tournament, whose first move is

“mcs” — 2015/5/18 — 1:43 — page 204 — #212

204 Chapter 6 Recursive Data Types

a choice of any positive integer n, after which we play an n-game tournament. Now
the meta-chess-tournament has an infinite number of first moves.

Of course only the first move in the meta-chess-tournament is infinite, but then
we could set up a tournament consisting of n meta-chess-tournaments. This would
be a game with n possible infinite moves. And then we could have a meta-meta-
chess-tournament whose first move was to choose how many meta-chess-tournaments
to play. This meta-meta-chess-tournament will have an infinite number of infinite
moves. Then we could move on to meta-meta-meta-chess-tournaments

As silly or weird as these meta games may seem, their weirdness doesn’t dis-
qualify the Fundamental Theorem: each of these games will still have a value.
(d) State some reasonable generalization of the Fundamental Theorem to games

with an infinite set V of possible payoffs. Optional: Prove your generalization.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

