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18 Random Variables
Thus far, we have focused on probabilities of events. For example, we computed
the probability that you win the Monty Hall game or that you have a rare medical
condition given that you tested positive. But, in many cases we would like to know
more. For example, how many contestants must play the Monty Hall game until
one of them finally wins? How long will this condition last? How much will I lose
gambling with strange dice all night? To answer such questions, we need to work
with random variables.

18.1 Random Variable Examples

Definition 18.1.1. A random variable R on a probability space is a total function
whose domain is the sample space.

The codomain of R can be anything, but will usually be a subset of the real
numbers. Notice that the name “random variable” is a misnomer; random variables
are actually functions.

For example, suppose we toss three independent, unbiased coins. Let C be the
number of heads that appear. Let M D 1 if the three coins come up all heads or all
tails, and let M D 0 otherwise. Now every outcome of the three coin flips uniquely
determines the values of C and M . For example, if we flip heads, tails, heads, then
C D 2 and M D 0. If we flip tails, tails, tails, then C D 0 and M D 1. In effect,
C counts the number of heads, and M indicates whether all the coins match.

Since each outcome uniquely determines C and M , we can regard them as func-
tions mapping outcomes to numbers. For this experiment, the sample space is:

S D fHHH; HHT; HTH; HT T; THH; THT; T TH; T T T g:

Now C is a function that maps each outcome in the sample space to a number as
follows:

C.HHH/ D 3 C.THH/ D 2

C.HHT / D 2 C.THT / D 1

C.HTH/ D 2 C.T TH/ D 1

C.HT T / D 1 C.T T T / D 0:
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Similarly, M is a function mapping each outcome another way:

M.HHH/ D 1 M.THH/ D 0

M.HHT / D 0 M.THT / D 0

M.HTH/ D 0 M.T TH/ D 0

M.HT T / D 0 M.T T T / D 1:

So C and M are random variables.

18.1.1 Indicator Random Variables
An indicator random variable is a random variable that maps every outcome to
either 0 or 1. Indicator random variables are also called Bernoulli variables. The
random variable M is an example. If all three coins match, then M D 1; otherwise,
M D 0.

Indicator random variables are closely related to events. In particular, an in-
dicator random variable partitions the sample space into those outcomes mapped
to 1 and those outcomes mapped to 0. For example, the indicator M partitions the
sample space into two blocks as follows:

HHH„ ƒ‚T T T… „HHT HTH HT T THH THT T TH :

M D 1 M D 0

In the same way, an event E partitions the sample

ƒ‚

space into those outcomes

…

in E and those not in E. So E is naturally associated with an indicator random
variable, IE , where IE .!/ D 1 for outcomes ! 2 E and IE .!/ D 0 for outcomes
! … E. Thus, M D IE where E is the event that all three coins match.

18.1.2 Random Variables and Events
There is a strong relationship between events and more general random variables
as well. A random variable that takes on several values partitions the sample space
into several blocks. For example, C partitions the sample space as follows:

„ƒ‚…T T T T TH THT HT T

C D 0

„
C

ƒ‚
D 1

… TH„ H Hƒ‚TH HHT HHH :

C D 2

… „
C

ƒ‚
D 3

Each block is a subset of the sample space and is therefore an event. So the assertion

…

that C D 2 defines the event

ŒC D 2ç D fTHH; HTH; HHT g;

and this event has probability

1 1 1
PrŒC D 2ç D PrŒTHH çC PrŒHTH çC PrŒHHT ç D

8
C

8
C

8
D 3=8:
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Likewise ŒM D 1ç is the event fT T T; HHH g and has probability 1=4.
More generally, any assertion about the values of random variables defines an

event. For example, the assertion that C  1 defines

ŒC  1ç D fT T T; T TH; THT; HT T g;

and so PrŒC  1ç D 1=2.
Another example is the assertion that C �M is an odd number. If you think about

it for a minute, you’ll realize that this is an obscure way of saying that all three
coins came up heads, namely,

ŒC �M is oddç D fHHH g:

18.2 Independence

The notion of independence carries over from events to random variables as well.
Random variables R1 and R2 are independent iff for all x1; x2, the two events

ŒR1 D x1ç and ŒR2 D x2ç

are independent.
For example, are C and M independent? Intuitively, the answer should be “no.”

The number of heads, C , completely determines whether all three coins match; that
is, whether M D 1. But, to verify this intuition, we must find some x1; x2 2 R
such that:

PrŒC D x1 AND M D x2ç ¤ PrŒC D x1ç � PrŒM D x2ç:

One appropriate choice of values is x1 D 2 and x2 D 1. In this case, we have:

1 3
PrŒC D 2 AND M D 1ç D 0 ¤

4
�

8
D PrŒM D 1ç � PrŒC D 2ç:

The first probability is zero because we never have exactly two heads (C D 2)
when all three coins match (M D 1). The other two probabilities were computed
earlier.

On the other hand, let H1 be the indicator variable for the event that the first flip
is a Head, so

ŒH1 D 1ç D fHHH; HTH; HHT; HT T g:



“mcs” — 2015/5/18 — 1:43 — page 742 — #750

742 Chapter 18 Random Variables

Then H1 is independent of M , since

PrŒM D 1ç D 1=4 D Pr
⇥
⇥M D 1 j H1 D 1 D Pr M D 1 j H1 D 0

PrŒM D 0ç D 3=4 D Pr M D 0 j H1 D 1

⇤
D Pr

⇥
M D 0 j H1 D 0

⇤

This example is an instance of:

⇤ ⇥ ⇤

Lemma 18.2.1. Two events are independent iff their indicator variables are inde-
pendent.

The simple proof is left to Problem 18.1.
Intuitively, the independence of two random variables means that knowing some

information about one variable doesn’t provide any information about the other
one. We can formalize what “some information” about a variable R is by defining
it to be the value of some quantity that depends on R. This intuitive property of
independence then simply means that functions of independent variables are also
independent:

Lemma 18.2.2. Let R and S be independent random variables, and f and g be
functions such that domain.f / D codomain.R/ and domain.g/ D codomain.S/.
Then f .R/ and g.S/ are independent random variables.

The proof is another simple exercise left to Problem 18.30.
As with events, the notion of independence generalizes to more than two random

variables.

Definition 18.2.3. Random variables R1; R2; : : : ; Rn are mutually independent iff
for all x1; x2; : : : ; xn, the n events

ŒR1 D x1ç; ŒR2 D x2ç; : : : ; ŒRn D xnç

are mutually independent. They are k-way independent iff every subset of k of
them are mutually independent.

Lemmas 18.2.1 and 18.2.2 both extend straightforwardly to k-way independent
variables.

18.3 Distribution Functions

A random variable maps outcomes to values. The probability density function,
PDFR.x/, of a random variable, R, measures the probability that R takes the value
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x, and the closely related cumulative distribution function, CDFR.x/, measures
the probability that R  x. Random variables that show up for different spaces
of outcomes often wind up behaving in much the same way because they have the
same probability of taking different values, that is, because they have the same
pdf/cdf.

Definition 18.3.1. Let R be a random variable with codomain V . The probability
density function of R is a function PDFR W V !

(
Œ0; 1ç defined by:

PrŒR
PDFR.x/

D xç if x 2 range.R/;WWD
0 if x … range.R/:

If the codomain is a subset of the real numbers, then the cumulative distribution
function is the function CDFR W R! Œ0; 1ç defined by:

CDFR.x/ WWD PrŒR  xç:

A consequence of this definition is that

x2range

X
PDFR.x/

.R/

D 1:

This is because R has a value for each outcome, so summing the probabilities over
all outcomes is the same as summing over the probabilities of each value in the
range of R.

As an example, suppose that you roll two unbiased, independent, 6-sided dice.
Let T be the random variable that equals the sum of the two rolls. This random
variable takes on values in the set V D f2; 3; : : : ; 12g. A plot of the probability
density function for T is shown in Figure 18.1. The lump in the middle indicates
that sums close to 7 are the most likely. The total area of all the rectangles is 1
since the dice must take on exactly one of the sums in V D f2; 3; : : : ; 12g.

The cumulative distribution function for T is shown in Figure 18.2: The height
of the i th bar in the cumulative distribution function is equal to the sum of the
heights of the leftmost i bars in the probability density function. This follows from
the definitions of pdf and cdf:

CDFR.x/ D PrŒR  xç D
X

PrŒR D yç D
X

PDFR.y/:
yx yx

It also follows from the definition that

lim CDFR.x/
x!1 D 1 and lim CDF 0:

x! 1 R.x/� D
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PDFT

Figure 18.1 The probability density function for the sum of two 6-sided dice.

CDFT

Figure 18.2 The cumulative distribution function for the sum of two 6-sided dice.
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Both PDFR and CDFR capture the same information about R, so take your choice.
The key point here is that neither the probability density function nor the cumulative
distribution function involves the sample space of an experiment.

One of the really interesting things about density functions and distribution func-
tions is that many random variables turn out to have the same pdf and cdf. In other
words, even though R and S are different random variables on different probability
spaces, it is often the case that

PDFR D PDFS :

In fact, some pdf’s are so common that they are given special names. For exam-
ple, the three most important distributions in computer science are the Bernoulli
distribution, the uniform distribution, and the binomial distribution. We look more
closely at these common distributions in the next several sections.

18.3.1 Bernoulli Distributions
A Bernoulli distribution is the distribution function for a Bernoulli variable. Specif-
ically, the Bernoulli distribution has a probability density function of the form
fp W f0; 1g ! Œ0; 1ç where

fp.0/ D p; and
fp.1/ D 1 � p;

for some p 2 Œ0; 1ç. The corresponding cumulative distribution function is Fp W
R! Œ0; 1ç where

Fp.x/ WWD

8̂
<0 if x < 0

:̂p if 0  x < 1

1 if 1  x:

18.3.2 Uniform Distributions
A random variable that takes on each possible value in its codomain with the same
probability is said to be uniform. If the codomain V has n elements, then the
uniform distribution has a pdf of the form

f W V ! Œ0; 1ç

where
1

f .v/ D
n

for all v 2 V .
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If the elements of V in increasing order are a1; a2; : : : ; an, then the cumulative
distribution function would be F W R! Œ0; 1ç

F.x/ WWD

8̂
where

<0 if x < a1

:̂k=n if ak  x < ak forC1 1  k < n

1 if an  x:

Uniform distributions come up all the time. For example, the number rolled on
a fair die is uniform on the set f1; 2; : : : ; 6g. An indicator variable is uniform when
its pdf is f1=2.

18.3.3 The Numbers Game
Enough definitions—let’s play a game! We have two envelopes. Each contains
an integer in the range 0; 1; : : : ; 100, and the numbers are distinct. To win the
game, you must determine which envelope contains the larger number. To give
you a fighting chance, we’ll let you peek at the number in one envelope selected
at random. Can you devise a strategy that gives you a better than 50% chance of
winning?

For example, you could just pick an envelope at random and guess that it contains
the larger number. But this strategy wins only 50% of the time. Your challenge is
to do better.

So you might try to be more clever. Suppose you peek in one envelope and see
the number 12. Since 12 is a small number, you might guess that the number in the
other envelope is larger. But perhaps we’ve been tricky and put small numbers in
both envelopes. Then your guess might not be so good!

An important point here is that the numbers in the envelopes may not be random.
We’re picking the numbers and we’re choosing them in a way that we think will
defeat your guessing strategy. We’ll only use randomization to choose the numbers
if that serves our purpose: making you lose!

Intuition Behind the Winning Strategy

People are surprised when they first learn that there is a strategy that wins more
than 50% of the time, regardless of what numbers we put in the envelopes.

Suppose that you somehow knew a number x that was in between the numbers
in the envelopes. Now you peek in one envelope and see a number. If it is bigger
than x, then you know you’re peeking at the higher number. If it is smaller than x,
then you’re peeking at the lower number. In other words, if you know a number x

between the numbers in the envelopes, then you are certain to win the game.
The only flaw with this brilliant strategy is that you do not know such an x. This

sounds like a dead end, but there’s a cool way to salvage things: try to guess x!
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There is some probability that you guess correctly. In this case, you win 100%
of the time. On the other hand, if you guess incorrectly, then you’re no worse off
than before; your chance of winning is still 50%. Combining these two cases, your
overall chance of winning is better than 50%.

Many intuitive arguments about probability are wrong despite sounding persua-
sive. But this one goes the other way: it may not convince you, but it’s actually
correct. To justify this, we’ll go over the argument in a more rigorous way—and
while we’re at it, work out the optimal way to play.

Analysis of the Winning Strategy

For generality, suppose that we can choose numbers from the integer interval Œ0::nç.
Call the lower number L and the higher number H .

Your goal is to guess a number x between L and H . It’s simplest if x does not
equal L or H , so you should select x at random from among the half-integers:

1 3 5 2n 1
; ; ; : : : ;

�
2 2 2 2

But what probability distribution should you use?
The uniform distribution—selecting each of these half-integers with equal probability—

turns out to be your best bet. An informal justification is that if we figured out that
you were unlikely to pick some number—say 501

2—then we’d always put 50 and 51
in the envelopes. Then you’d be unlikely to pick an x between L and H and would
have less chance of winning.

After you’ve selected the number x, you peek into an envelope and see some
number T . If T > x, then you guess that you’re looking at the larger number.
If T < x, then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We
can do this with the usual four step method and a tree diagram.

Step 1: Find the sample space.
You either choose x too low (< L), too high (> H ), or just right (L < x < H ).
Then you either peek at the lower number (T D L) or the higher number (T D H ).
This gives a total of six possible outcomes, as show in Figure 18.3.

Step 2: Define events of interest.
The four outcomes in the event that you win are marked in the tree diagram.

Step 3: Assign outcome probabilities.
First, we assign edge probabilities. Your guess x is too low with probability L=n,
too high with probability .n �H/=n, and just right with probability .H � L/=n.
Next, you peek at either the lower or higher number with equal probability. Multi-
plying along root-to-leaf paths gives the outcome probabilities.
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choices number result probability
of peeked at

lose

 too low
win

win
 just right

win

win
 too high

lose

Figure 18.3 The tree diagram for the numbers game.

Step 4: Compute event probabilities.
The probability of the event that you win is the sum of the probabilities of the four
outcomes in that event:

L H H
PrŒwinç

� L H � L n �D
2n
C

2n
C

2n
C

2n
1 H � LD
2
C

2n
1 1�
2
C

2n

The final inequality relies on the fact that the higher number H is at least 1 greater
than the lower number L since they are required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless of the
numbers in the envelopes! So with numbers chosen from the range 0; 1; : : : ; 100,
you win with probability at least 1=2 C 1=200 D 50:5%. If instead we agree to
stick to numbers 0; : : : ; 10, then your probability of winning rises to 55%. By Las
Vegas standards, those are great odds.
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Randomized Algorithms

The best strategy to win the numbers game is an example of a randomized algo-
rithm—it uses random numbers to influence decisions. Protocols and algorithms
that make use of random numbers are very important in computer science. There
are many problems for which the best known solutions are based on a random num-
ber generator.

For example, the most commonly-used protocol for deciding when to send a
broadcast on a shared bus or Ethernet is a randomized algorithm known as expo-
nential backoff. One of the most commonly-used sorting algorithms used in prac-
tice, called quicksort, uses random numbers. You’ll see many more examples if
you take an algorithms course. In each case, randomness is used to improve the
probability that the algorithm runs quickly or otherwise performs well.

18.3.4 Binomial Distributions
The third commonly-used distribution in computer science is the binomial distri-
bution. The standard example of a random variable with a binomial distribution is
the number of heads that come up in n independent flips of a coin. If the coin is
fair, then the number of heads has an unbiased binomial distribution, specified by
the pdf fn W Œ0::nç! Œ0; 1ç:

n
f n

n.k/ WWD
 

k

!
2� :

This is because there are n
k sequences of n coin tosses with exactly k heads, and

each such sequence has probability
sho

�
2�n.

A plot of f20.k/ is wn

�

in Figure 18.4. The most likely outcome is k D 10

heads, and the probability falls off rapidly for larger and smaller values of k. The
falloff regions to the left and right of the main hump are called the tails of the
distribution.

In many fields, including Computer Science, probability analyses come down to
getting small bounds on the tails of the binomial distribution. In the context of a
problem, this typically means that there is very small probability that something
bad happens, which could be a server or communication link overloading or a ran-
domized algorithm running for an exceptionally long time or producing the wrong
result.

The tails do get small very fast. For example, the probability of flipping at most
25 heads in 100 tosses is less than 1 in 3,000,000. In fact, the tail of the distribution
falls off so rapidly that the probability of flipping exactly 25 heads is nearly twice
the probability of flipping exactly 24 heads plus the probability of flipping exactly
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Figure 18.4 The pdf for the unbiased binomial distribution for n D 20, f20.k/.

23 heads plus . . . the probability of flipping no heads.

The General Binomial Distribution

If the coins are biased so that each coin is heads with probability p, then the
number of heads has a general binomial density function specified by the pdf
fn;p W Œ0::nç! Œ0; 1ç where

fn;p.k/ D
 

n
!

pk.1 � p/n�k : (18.1)
k

for some n 2 NC and p 2 Œ0; 1ç. This is because there are n
k sequences with

k heads and n � k tails, but now pk.1 � p/n�k is the probability

� �
of each such

sequence.
For example, the plot in Figure 18.5 shows the probability density function

fn;p.k/ corresponding to flipping n D 20 independent coins that are heads with
probability p D 0:75. The graph shows that we are most likely to get k D 15

heads, as you might expect. Once again, the probability falls off quickly for larger
and smaller values of k.
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Figure 18.5 The pdf for the general binomial distribution fn;p.k/ for n D 20

and p D :75.
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