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The expectation or expected value of a random variable is a single number that re-
veals a lot about the behavior of the variable. The expectation of a random variable
is also known as its mean or average. For example, the first thing you typically
want to know when you see your grade on an exam is the average score of the
class. This average score turns out to be precisely the expectation of the random
variable equal to the score of a random student.

More precisely, the expectation of a random variable is its “average” value when
each value is weighted according to its probability. Formally, the expected value of
a random variable is defined as follows:

Definition 18.4.1. If R is a random variable defined on a sample space S , then the
expectation of R is

ExŒRç WWD
!

X
R.!/ PrŒ!ç: (18.2)

2S

Let’s work through some examples.
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18.4.1 The Expected Value of a Uniform Random Variable
Rolling a 6-sided die provides an example of a uniform random variable. Let R be
the value that comes up when you roll a fair 6-sided die. Then by (18.2), the
expected value of R is
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This calculation shows that the name “expected” value is a little misleading; the
random variable might never actually take on that value. No one expects to roll a
31

2 on an ordinary die!
In general, if Rn is a random variable with a uniform distribution on fa1; a2; : : : ; ang,

then the expectation of Rn is simply the average of the ai ’s:
a
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n

18.4.2 The Expected Value of a Reciprocal Random Variable
Define a random variable S to be the reciprocal of the value that comes up when
you roll a fair 6-sided die. That is, S D 1=R where R is the value that you roll.
Now, 
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Notice that
Ex
⇥
1=R

Assuming

⇤
¤ 1= ExŒRç:

that these two quantities are equal is a common mistake.

18.4.3 The Expected Value of an Indicator Random Variable
The expected value of an indicator random variable for an event is just the proba-
bility of that event.

Lemma 18.4.2. If IA is the indicator random variable for event A, then

ExŒIAç D PrŒAç:

Proof.

ExŒIAç D 1 � PrŒIA D 1çC 0 � PrŒIA D 0ç D PrŒIA D 1ç

D PrŒAç: (def of IA)

For example, if A is the event that a coin with bias p comes up heads, then
ExŒIAç D PrŒIA D 1ç D p.
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18.4.4 Alternate Definition of Expectation
There is another standard way to define expectation.

Theorem 18.4.3. For any random variable R,

ExŒRç D
x2range

X
x PrŒR xç: (18.3)

.R/

� D

The proof of Theorem 18.4.3, like many of the elementary proofs about expec-
tation in this chapter, follows by regrouping of terms in equation (18.2):

Proof. Suppose R is defined on a sample space S . Then,

ExŒRç WWD
!

X
R.!/ PrŒ!ç

2S
D

X X
R.!/ PrŒ!ç

x2range.R/ !2ŒRDxç

D
X X

x PrŒ!ç (def of the event ŒR xç)
x2range.R/ !20ŒRDxç

D

D
X

x@ X
PrŒ!ç

x2range.R/ !2ŒRDxç

1
A (factoring x from the inner sum)

D
x

X
x

.R/

� PrŒR D xç: (def of PrŒR D xç)
2range

The first equality follows because the events ŒR D xç for x 2 range.R/ partition
the sample space S , so summing over the outcomes in ŒR D xç for x 2 range.R/

is the same as summing over S . ⌅

In general, equation (18.3) is more useful than the defining equation (18.2) for
calculating expected values. It also has the advantage that it does not depend on
the sample space, but only on the density function of the random variable. On
the other hand, summing over all outcomes as in equation (18.2) sometimes yields
easier proofs about general properties of expectation.

18.4.5 Conditional Expectation
Just like event probabilities, expectations can be conditioned on some event. Given
a random variable R, the expected value of R conditioned on an event A is the
probability-weighted average value of R over outcomes in A. More formally:
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Definition 18.4.4. The conditional expectation ExŒR j Aç of a random variable R

given event A is:

ExŒR j Aç WWD
X

r � Pr
⇥
R r

r2range.R/

D j A
⇤

: (18.4)

For example, we can compute the expected value of a roll of a fair die, given that
the number rolled is at least 4. We do this by letting R be the outcome of a roll of
the die. Then by equation (18.4),

6

ExŒR j R � 4ç D
X
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iD1

�
⇥
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D � C � C � C � C � C � D

Conditional expectation is useful in dividing complicated expectation calcula-
tions into simpler cases. We can find a desired expectation by calculating the con-
ditional expectation in each simple case and averaging them, weighing each case
by its probability.

For example, suppose that 49.6% of the people in the world are male and the
rest female—which is more or less true. Also suppose the expected height of a
randomly chosen male is 50 1100, while the expected height of a randomly chosen
female is 50 5:00 What is the expected height of a randomly chosen person? We can
calculate this by averaging the heights of men and women. Namely, let H be the
height (in feet) of a randomly chosen person, and let M be the event that the person
is male and F the event that the person is female. Then

ExŒH ç D ExŒH jM ç PrŒM çC ExŒH j F ç PrŒF ç

D .5C 11=12/ � 0:496C .5C 5=12/ � .1 � 0:496/

D 5:6646 : : : :

which is a little less than 5’ 8.”
This method is justified by:

Theorem 18.4.5 (Law of Total Expectation). Let R be a random variable on a
sample space S , and suppose that A1, A2, . . . , is a partition of S . Then

ExŒRç D
X

ExŒR

i

j Ai ç PrŒAi ç:
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Proof.

ExŒRç D
X

r � PrŒR D r ç (by 18.3)
r2range.R/

D
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D Pr i ç ExŒR j Ai ç: (Def 18.4.4 of cond. expectation)
i

⌅

18.4.6 Mean Time to Failure
A computer program crashes at the end of each hour of use with probability p, if
it has not crashed already. What is the expected time until the program crashes?
This will be easy to figure out using the Law of Total Expectation, Theorem 18.4.5.
Specifically, we want to find ExŒC ç where C is the number of hours until the first
crash. We’ll do this by conditioning on whether or not the crash occurs in the first
hour.

So define A to be the event that the system fails on the first step and A to be the
complementary event that the system does not fail on the first step. Then the mean
time to failure ExŒC ç is

ExŒC ç D ExŒC j Aç PrŒAçC ExŒC j Aç PrŒAç: (18.5)

Since A is the condition that the system crashes on the first step, we know that

ExŒC j Aç D 1: (18.6)

Since A is the condition that the system does not crash on the first step, conditioning
on A is equivalent to taking a first step without failure and then starting over without
conditioning. Hence,

ExŒC j Aç D 1C ExŒC ç: (18.7)
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Plugging (18.6) and (18.7) into (18.5):

ExŒC ç D 1 � p C .1C ExŒC ç/.1 � p/

D p C 1 � p C .1 � p/ ExŒC ç

D 1C .1 � p/ ExŒC ç:

Then, rearranging terms gives

1 D ExŒC ç � .1 � p/ ExŒC ç D p ExŒC ç;

and thus
ExŒC ç D 1=p:

The general principle here is well-worth remembering.

Mean Time to Failure

If a system independently fails at each time step with probability p, then the
expected number of steps up to the first failure is 1=p.

So, for example, if there is a 1% chance that the program crashes at the end of
each hour, then the expected time until the program crashes is 1=0:01 D 100 hours.

As a further example, suppose a couple insists on having children until they get
a boy, then how many baby girls should they expect before their first boy? Assume
for simplicity that there is a 50% chance that a child will be a boy and that the
genders of siblings are mutually independent.

This is really a variant of the previous problem. The question, “How many hours
until the program crashes?” is mathematically the same as the question, “How
many children must the couple have until they get a boy?” In this case, a crash
corresponds to having a boy, so we should set p D 1=2. By the preceding analysis,
the couple should expect a baby boy after having 1=p D 2 children. Since the last
of these will be a boy, they should expect just one girl. So even in societies where
couples pursue this commitment to boys, the expected population will divide evenly
between boys and girls.

There is a simple intuitive argument that explains the mean time to failure for-
mula (18.8). Suppose the system is restarted after each failure. This makes the
mean time to failure the same as the mean time between successive repeated fail-
ures. Now if the probability of failure at a given step is p, then after n steps we
expect to have pn failures. Now, by definition, the average number of steps be-
tween failures is equal to np=p, namely, 1=p.
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For the record, we’ll state a formal version of this result. A random variable
like C that counts steps to first failure is said to have a geometric distribution with
parameter p.
Definition 18.4.6. A random variable, C , has a geometric distribution with param-
eter p iff codomain.C / D ZC and

PrŒC D i ç D .1 � p/i�1p:

Lemma 18.4.7. If a random variable C has a geometric distribution with param-
eter p, then

1
ExŒC ç D : (18.8)

p

18.4.7 Expected Returns in Gambling Games
Some of the most interesting examples of expectation can be explained in terms of
gambling games. For straightforward games where you win w dollars with proba-
bility p and you lose x dollars with probability 1 � p, it is easy to compute your
expected return or winnings. It is simply

pw � .1 � p/x dollars:

For example, if you are flipping a fair coin and you win $1 for heads and you lose $1
for tails, then your expected winnings are

1

2
� 1 �

✓
1

1 �
2

◆
� 1 D 0:

In such cases, the game is said to be fair since your expected return is zero.

Splitting the Pot

We’ll now look at a different game which is fair—but only on first analysis.
It’s late on a Friday night in your neighborhood hangout when two new biker

dudes, Eric and Nick, stroll over and propose a simple wager. Each player will
put $2 on the bar and secretly write “heads” or “tails” on their napkin. Then you
will flip a fair coin. The $6 on the bar will then be “split”—that is, be divided
equally—among the players who correctly predicted the outcome of the coin toss.
Pot splitting like this is a familiar feature in poker games, betting pools, and lotter-
ies.

This sounds like a fair game, but after your regrettable encounter with strange
dice (Section 16.3), you are definitely skeptical about gambling with bikers. So
before agreeing to play, you go through the four-step method and write out the
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you guess Eric guesses Nick guesses your probability
right? right? right? payoff

yes $0

yes
no $1

yes $1
yes

no

no $4

yes $2

yes
no

no $2

yes $2
no

no $0

Figure 18.6 The tree diagram for the game where three players each wager $2
and then guess the outcome of a fair coin toss. The winners split the pot.
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tree diagram to compute your expected return. The tree diagram is shown in Fig-
ure 18.6.

The “payoff” values in Figure 18.6 are computed by dividing the $6 pot1 among
those players who guessed correctly and then subtracting the $2 that you put into
the pot at the beginning. For example, if all three players guessed correctly, then
your payoff is $0, since you just get back your $2 wager. If you and Nick guess
correctly and Eric guessed wrong, then your payoff is

6

2
� 2 D 1:

In the case that everyone is wrong, you all agree to split the pot and so, again, your
payoff is zero.

To compute your expected return, you use equation (18.3):

1 1 1 1
ExŒpayoffç D 0 �

8
C 1 �

8
C 1 �

8
C 4 �

8
1 1 1 1C .�2/ �
8
C .�2/ � . 2/ 0

8
C � �

8
C �

8
D 0:

This confirms that the game is fair. So, for old time’s sake, you break your solemn
vow to never ever engage in strange gambling games.

The Impact of Collusion

Needless to say, things are not turning out well for you. The more times you play
the game, the more money you seem to be losing. After 1000 wagers, you have
lost over $500. As Nick and Eric are consoling you on your “bad luck,” you do a
back-of-the-envelope calculation and decide that the probability of losing $500 in
1000 fair $2 wagers is very, very small.

Now it is possible of course that you are very, very unlucky. But it is more likely
that something fishy is going on. Somehow the tree diagram in Figure 18.6 is not a
good model of the game.

The “something” that’s fishy is the opportunity that Nick and Eric have to collude
against you. The fact that the coin flip is fair certainly means that each of Nick and
Eric can only guess the outcome of the coin toss with probability 1=2. But when
you look back at the previous 1000 bets, you notice that Eric and Nick never made
the same guess. In other words, Nick always guessed “tails” when Eric guessed
“heads,” and vice-versa. Modelling this fact now results in a slightly different tree
diagram, as shown in Figure 18.7.

1The money invested in a wager is commonly referred to as the pot.
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you guess Eric guesses Nick guesses your probability
right? right? right? payoff

yes $0

yes
no $1

yes $1
yes

no

no $4

yes $2

yes
no

no $2

yes $2
no

no $0

Figure 18.7 The revised tree diagram reflecting the scenario where Nick always
guesses the opposite of Eric.
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The payoffs for each outcome are the same in Figures 18.6 and 18.7, but the
probabilities of the outcomes are different. For example, it is no longer possible
for all three players to guess correctly, since Nick and Eric are always guessing
differently. More importantly, the outcome where your payoff is $4 is also no
longer possible. Since Nick and Eric are always guessing differently, one of them
will always get a share of the pot. As you might imagine, this is not good for you!

When we use equation (18.3) to compute your expected return in the collusion
scenario, we find that

1 1
ExŒpayoffç D 0 � 0C 1 �

4
C 1 �

4
C 4 � 0
1 1C .�2/ � 0C .�2/ �
4
C .�2/ �

4
C 0 � 0

1D � :
2

So watch out for these biker dudes! By colluding, Nick and Eric have made it so
that you expect to lose $.50 every time you play. No wonder you lost $500 over the
course of 1000 wagers.

How to Win the Lottery

Similar opportunities to collude arise in many betting games. For example, consider
the typical weekly football betting pool, where each participant wagers $10 and the
participants that pick the most games correctly split a large pot. The pool seems
fair if you think of it as in Figure 18.6. But, in fact, if two or more players collude
by guessing differently, they can get an “unfair” advantage at your expense!

In some cases, the collusion is inadvertent and you can profit from it. For ex-
ample, many years ago, a former MIT Professor of Mathematics named Herman
Chernoff figured out a way to make money by playing the state lottery. This was
surprising since the state usually takes a large share of the wagers before paying the
winners, and so the expected return from a lottery ticket is typically pretty poor. So
how did Chernoff find a way to make money? It turned out to be easy!

In a typical state lottery,

✏ all players pay $1 to play and select 4 numbers from 1 to 36,

✏ the state draws 4 numbers from 1 to 36 uniformly at random,

✏ the states divides 1/2 of the money collected among the people who guessed
correctly and spends the other half redecorating the governor’s residence.

This is a lot like the game you played with Nick and Eric, except that there are
more players and more choices. Chernoff discovered that a small set of numbers
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was selected by a large fraction of the population. Apparently many people think
the same way; they pick the same numbers not on purpose as in the previous game
with Nick and Eric, but based on the Red Sox winning average or today’s date. The
result is as though the players were intentionally colluding to lose. If any one of
them guessed correctly, then they’d have to split the pot with many other players.
By selecting numbers uniformly at random, Chernoff was unlikely to get one of
these favored sequences. So if he won, he’d likely get the whole pot! By analyzing
actual state lottery data, he determined that he could win an average of 7 cents on
the dollar. In other words, his expected return was not �$:50 as you might think,
butC$:07.2 Inadvertent collusion often arises in betting pools and is a phenomenon
that you can take advantage of.

18.5 Linearity of Expectation

Expected values obey a simple, very helpful rule called Linearity of Expectation.
Its simplest form says that the expected value of a sum of random variables is the
sum of the expected values of the variables.

Theorem 18.5.1. For any random variables R1 and R2,

ExŒR1 CR2ç D ExŒR1çC ExŒR2ç:

Proof. Let T WWD R1 C R2. The proof follows straightforwardly by rearranging
terms in equation (18.2) in the definition of expectation:

ExŒT ç WWD T .!/ PrŒ!ç

X!
X

�
2S

D .R1.!/
!

CR2.!// � PrŒ!ç (def of T )
2S

D R1.!/ PrŒ!ç terms)
!

C R2.!/ PrŒ!ç (rearranging
2S !2S

D Ex

X

ŒR

X

1çC ExŒR2ç: (by (18.2))

⌅

A small extension of this proof, which we leave to the reader, implies
2Most lotteries now offer randomized tickets to help smooth out the distribution of selected se-

quences.
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Theorem 18.5.2. For random variables R1, R2 and constants a1; a2 2 R,

ExŒa1R1 C a2R2ç D a1 ExŒR1çC a2 ExŒR2ç:

In other words, expectation is a linear function. A routine induction extends the
result to more than two variables:

Corollary 18.5.3 (Linearity of Expectation). For any random variables R1; : : : ; Rk

and constants a1; : : : ; ak 2 R,

Ex

2
4X

k k

aiRi

3
5 DX ai ExŒRi ç:

iD1 iD1

The great thing about linearity of expectation is that no independence is required.
This is really useful, because dealing with independence is a pain, and we often
need to work with random variables that are not known to be independent.

As an example, let’s compute the expected value of the sum of two fair dice.

18.5.1 Expected Value of Two Dice
What is the expected value of the sum of two fair dice?

Let the random variable R1 be the number on the first die, and let R2 be the
number on the second die. We observed earlier that the expected value of one die
is 3.5. We can find the expected value of the sum using linearity of expectation:

ExŒR1 CR2ç D ExŒR1çC ExŒR2ç D 3:5C 3:5 D 7:

Assuming that the dice were independent, we could use a tree diagram to prove
that this expected sum is 7, but this would be a bother since there are 36 cases. And
without assuming independence, it’s not apparent how to apply the tree diagram
approach at all. But notice that we did not have to assume that the two dice were
independent. The expected sum of two dice is 7—even if they are controlled to act
together in some way—as long as each individual controlled die remains fair.

18.5.2 Sums of Indicator Random Variables
Linearity of expectation is especially useful when you have a sum of indicator ran-
dom variables. As an example, suppose there is a dinner party where n men check
their hats. The hats are mixed up during dinner, so that afterward each man receives
a random hat. In particular, each man gets his own hat with probability 1=n. What
is the expected number of men who get their own hat?

Letting G be the number of men that get their own hat, we want to find the
expectation of G. But all we know about G is that the probability that a man gets
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his own hat back is 1=n. There are many different probability distributions of hat
permutations with this property, so we don’t know enough about the distribution of
G to calculate its expectation directly using equation (18.2) or (18.3). But linearity
of expectation lets us sidestep this issue.

We’ll use a standard, useful trick to apply linearity, namely, we’ll express G as
a sum of indicator variables. In particular, let Gi be an indicator for the event that
the i th man gets his own hat. That is, Gi D 1 if the i th man gets his own hat, and
Gi D 0 otherwise. The number of men that get their own hat is then the sum of
these indicator random variables:

G D G1 CG2 C � � �CGn: (18.9)

These indicator variables are not mutually independent. For example, if n� 1 men
all get their own hats, then the last man is certain to receive his own hat. But again,
we don’t need to worry about this dependence, since linearity holds regardless.

Since Gi is an indicator random variable, we know from Lemma 18.4.2 that

ExŒGi ç D PrŒGi D 1ç D 1=n: (18.10)

By Linearity of Expectation and equation (18.9), this means that

ExŒGç D ExŒG1 CG2 C � � �CGnç

D ExŒG1çC ExŒG2ç
n

C � � �C ExŒGnç

D
‚
1 1

n
C

n

…„
1C � � �C
n

ƒ

D 1:

So even though we don’t know much about how hats are scrambled, we’ve figured
out that on average, just one man gets his own hat back, regardless of the number
of men with hats!

More generally, Linearity of Expectation provides a very good method for com-
puting the expected number of events that will happen.

Theorem 18.5.4. Given any collection of events A1; A2; : : : ; An, the expected
number of events that will occur is

Xn

PrŒAi ç:
iD1

For example, Ai could be the event that the i th man gets the right hat back. But
in general, it could be any subset of the sample space, and we are asking for the
expected number of events that will contain a random sample point.
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Proof. Define Ri to be the indicator random variable for Ai , where Ri .!/ D 1 if
w 2 Ai and Ri .!/ D 0 if w … Ai . Let R D R1 CR2 C � � �CRn. Then

n

ExŒRç D
X

ExŒRi ç (by Linearity of Expectation)
iD1

n

D
X

PrŒRi ç
D1

D 1 (by Lemma 18.4.2)
i

n

D
X

PrŒAi ç: (def of indicator variable)
iD1

So whenever you are asked for the expected number of events that occur, all you
have to do is sum the probabilities that each event occurs. Independence is not
needed.

18.5.3 Expectation of a Binomial Distribution
Suppose that we independently flip n biased coins, each with probability p of com-
ing up heads. What is the expected number of heads?

Let J be the random variable denoting the number of heads. Then J has a
binomial distribution with parameters

 
n, p
!

, and

n
PrŒJ D kç D pk.1

k
� p/n�k :

Applying equation (18.3), this means that
n

ExŒJ ç D
X Xn

n
k PrŒJ D kç D k k

0

!
�

kD0 kD

 
pk.1

k
� p/n : (18.11)

This sum looks a tad nasty, but linearity of expectation leads to an easy derivation
of a simple closed form. We just express J as a sum of indicator random variables,
which is easy. Namely, let Ji be the indicator random variable for the i th coin
coming up heads, that is,

i
J WWD

(
1 if the th coin is heads

i
0 if the i th coin is tails:

Then the number of heads is simply

J D J1 C J2 C � � �C Jn:
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By Theorem 18.5.4,
n

ExŒJ ç D
X

PrŒJi ç D pn: (18.12)
iD1

That really was easy. If we flip n mutually independent coins, we expect to get
pn heads. Hence the expected value of a binomial distribution with parameters n

and p is simply pn.
But what if the coins are not mutually independent? It doesn’t matter—the an-

swer is still pn because Linearity of Expectation and Theorem 18.5.4 do not as-
sume any independence.

If you are not yet convinced that Linearity of Expectation and Theorem 18.5.4
are powerful tools, consider this: without even trying, we have used them to prove
a complicated looking identity, namely,

Xn

k

 
n
!

pk.1 � p/n�k D pn; (18.13)
k

kD0

which follows by combining equations (18.11) and (18.12) (see also Exercise 18.26).
The next section has an even more convincing illustration of the power of linear-

ity to solve a challenging problem.

18.5.4 The Coupon Collector Problem
Every time we purchase a kid’s meal at Taco Bell, we are graciously presented with
a miniature “Racin’ Rocket” car together with a launching device which enables us
to project our new vehicle across any tabletop or smooth floor at high velocity.
Truly, our delight knows no bounds.

There are different colored Racin’ Rocket cars. The color of car awarded to
us by the kind server at the Taco Bell register appears to be selected uniformly and
independently at random. What is the expected number of kid’s meals that we must
purchase in order to acquire at least one of each color of Racin’ Rocket car?

The same mathematical question shows up in many guises: for example, what
is the expected number of people you must poll in order to find at least one person
with each possible birthday? The general question is commonly called the coupon
collector problem after yet another interpretation.

A clever application of linearity of expectation leads to a simple solution to the
coupon collector problem. Suppose there are five different colors of Racin’ Rocket
cars, and we receive this sequence:

blue green green red blue orange blue orange gray.
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Let’s partition the sequence into 5 segments:

„ƒ‚…blue „ƒ‚…green green red blue orange blue orange gray :

X0 X1 X2 X3 X4

The rule is that a segment

„

ends

ƒ‚

whene

…

ver

„

we

ƒ‚

get a ne

…

w kind

„

of car

ƒ‚

. For example,

…

the
middle segment ends when we get a red car for the first time. In this way, we can
break the problem of collecting every type of car into stages. Then we can analyze
each stage individually and assemble the results using linearity of expectation.

In the general case there are n colors of Racin’ Rockets that we’re collecting.
Let Xk be the length of the kth segment. The total number of kid’s meals we must
purchase to get all n Racin’ Rockets is the sum of the lengths of all these segments:

T D X0 CX1 C � � �CXn�1:

Now let’s focus our attention on Xk , the length of the kth segment. At the
beginning of segment k, we have k different types of car, and the segment ends
when we acquire a new type. When we own k types, each kid’s meal contains a
type that we already have with probability k=n. Therefore, each meal contains a
new type of car with probability 1� k=n D .n� k/=n. Thus, the expected number
of meals until we get a new kind of car is n=.n � k/ by the Mean Time to Failure
rule. This means that

n
ExŒXkç D :

n � k

Linearity of expectation, together with this observation, solves the coupon col-
lector problem:

ExŒT ç D ExŒX0 CX1 C � � �CXn�1ç

D ExŒX0çC ExŒX1çC � � �C ExŒXn�1ç

n n n n nD
n � 0

C
✓ n

C � � �C� 1 3
C

2
C

1

1 1 1 1 1D n
n
C

n � 1
C � � �C

3
C

2
C

✓ 1

1 1 1 1 1

◆

D n
1
C

2
C

3
C � � �C

n � 1
C

n

◆

D nHn (18.14)

⇠ n ln n:

Cool! It’s those Harmonic Numbers again.
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We can use equation (18.14) to answer some concrete questions. For example,
the expected number of die rolls required to see every number from 1 to 6 is:

6H6 D 14:7 : : : :

And the expected number of people you must poll to find at least one person with
each possible birthday is:

365H365 D 2364:6 : : : :

18.5.5 Infinite Sums
Linearity of expectation also works for an infinite number of random variables
provided that the variables satisfy an absolute convergence criterion.

Theorem 18.5.5 (Linearity of Expectation). Let R0, R1, . . . , be random variables
such that X1

ExŒ
i 0

jRi j ç
D

converges. Then
1 1

Ex

"X
Ri

#
D
X

ExŒRi ç:
iD0 iD0

Proof. Let T WWD 1
i .D0 Ri

We leave it to the

P
reader to verify that, under the given convergence hypothesis,

all the sums in the following derivation are absolutely convergent, which justifies
rearranging them as follows:

X1 1
ExŒRi ç Ri .s/ PrŒsç (Def. 18.4.1)

i

D
D0

X
iD0

X
�

D
X
s2S

X
s2S
1

Ri .s/ PrŒsç (exchanging order of summation)

X"iD
X
0

�

1
D Ri .s/

#
� PrŒsç (factoring out PrŒsç)

D
Xs2S iD0

T .s/
s

� PrŒsç (Def. of T )
2S

D ExŒT" ç (Def. 18.4.1)
1

D Ex
X

Ri (Def. ⌅
D

#
: of T ):

i 0
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18.5.6 A Gambling Paradox
One of the simplest casino bets is on “red” or “black” at the roulette table. In each
play at roulette, a small ball is set spinning around a roulette wheel until it lands in
a red, black, or green colored slot. The payoff for a bet on red or black matches the
bet; for example, if you bet $10 on red and the ball lands in a red slot, you get back
your original $10 bet plus another matching $10.

The casino gets its advantage from the green slots, which make the probability
of both red and black each less than 1/2. In the US, a roulette wheel has 2 green
slots among 18 black and 18 red slots, so the probability of red is 18=38 ⇡ 0:473.
In Europe, where roulette wheels have only 1 green slot, the odds for red are a little
better—that is, 18=37 ⇡ 0:486—but still less than even.

Of course you can’t expect to win playing roulette, even if you had the good
fortune to gamble against a fair roulette wheel. To prove this, note that with a fair
wheel, you are equally likely win or lose each bet, so your expected win on any
spin is zero. Therefore if you keep betting, your expected win is the sum of your
expected wins on each bet: still zero.

Even so, gamblers regularly try to develop betting strategies to win at roulette
despite the bad odds. A well known strategy of this kind is bet doubling, where
you bet, say, $10 on red and keep doubling the bet until a red comes up. This
means you stop playing if red comes up on the first spin, and you leave the casino
with a $10 profit. If red does not come up, you bet $20 on the second spin. Now if
the second spin comes up red, you get your $20 bet plus $20 back and again walk
away with a net profit of $20 � 10 D $10. If red does not come up on the second
spin, you next bet $40 and walk away with a net win of $40� 20� 10 D $10 if red
comes up on on the third spin, and so on.

Since we’ve reasoned that you can’t even win against a fair wheel, this strat-
egy against an unfair wheel shouldn’t work. But wait a minute! There is a 0.486
probability of red appearing on each spin of the wheel, so the mean time until a red
occurs is less than three. What’s more, red will come up eventually with probability
one, and as soon as it does, you leave the casino $10 ahead. In other words, by bet
doubling you are certain to win $10, and so your expectation is $10, not zero!

Something’s wrong here.

18.5.7 Solution to the Paradox
The argument claiming the expectation is zero against a fair wheel is flawed by an
implicit, invalid use of linearity of expectation for an infinite sum.

To explain this carefully, let Bn be the number of dollars you win on your nth
bet, where Bn is defined to be zero if red comes up before the nth spin of the wheel.
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Now the dollar amount you win in any gambling session is

X1
Bn;

nD1

and your expected win is

Ex

" 1
Bn

nD1

#
: (18.15)

Moreover, since we’re assuming the wheel

X

is fair, it’s true that ExŒBnç D 0, so

X1 X1
ExŒBnç D 0 D 0: (18.16)

nD1 nD1

The flaw in the argument that you can’t win is the implicit appeal to linearity of
expectation to conclude that the expectation (18.15) equals the sum of expectations
in (18.16). This is a case where linearity of expectation fails to hold—even though
the expectation (18.15) is 10 and the sum (18.16) of expectations converges. The
problem is that the expectation of the sum of the absolute values of the bets di-
verges, so the condition required for infinite linearity fails. In particular, under bet
doubling your nth bet is 10 � 2n�1 dollars while the probability that you will make
an nth bet is 2�n. So

ExŒjBnjç D 10 � 2n�12�n D 20:

Therefore the sum
1

ExŒ Bn ç 20 20 20
n

X
C

D1

j j D C C � � �

diverges rapidly.
So the presumption that you can’t beat a fair game, and the argument we offered

to support this presumption, are mistaken: by bet doubling, you can be sure to walk
away a winner. Probability theory has led to an apparently absurd conclusion.

But probability theory shouldn’t be rejected because it leads to this absurd con-
clusion. If you only had a finite amount of money to bet with—say enough money
to make k bets before going bankrupt—then it would be correct to calculate your
expection by summing B1 C B2 C � � �C Bk , and your expectation would be zero
for the fair wheel and negative against an unfair wheel. In other words, in order
to follow the bet doubling strategy, you need to have an infinite bankroll. So it’s
absurd to assume you could actually follow a bet doubling strategy, and it’s entirely
reasonable that an absurd assumption leads to an absurd conclusion.



“mcs” — 2015/5/18 — 1:43 — page 771 — #779

18.5. Linearity of Expectation 771

18.5.8 Expectations of Products
While the expectation of a sum is the sum of the expectations, the same is usually
not true for products. For example, suppose that we roll a fair 6-sided die and
denote the outcome with the random variable R. Does ExŒR �Rç D ExŒRç

1
�ExŒRç?

We know that ExŒRç D 3 ŒRç2 121 ŒR2ç2 and thus Ex D 4 . Let’s compute Ex to
see if we get the same result.

6

Ex
⇥
R2
⇤
D
X

R2.!/ PrŒwç D
X

i2 Pr
!2S iD1

� ŒRi D i ç

12 22 32 42 52 62

D
6
C

6
C

6
C

6
C

6
C

6
D 15 1=6 ¤ 12 1=4:

That is,
ExŒR �Rç ¤ ExŒRç � ExŒRç:

So the expectation of a product is not always equal to the product of the expecta-
tions.

There is a special case when such a relationship does hold however; namely,
when the random variables in the product are independent.

Theorem 18.5.6. For any two independent random variables R1, R2,

ExŒR1 �R2ç D ExŒR1ç � ExŒR2ç:

The proof follows by rearrangement of terms in the sum that defines ExŒR1 �R2ç.
Details appear in Problem 18.25.

Theorem 18.5.6 extends routinely to a collection of mutually independent vari-
ables.

Corollary 18.5.7. [Expectation of Independent Product]
If random variables R1; R2; : : : ; Rk are mutually independent, then

k k

Ex

2

i

Y
Ri

D1

3
4 5 D

i

Y
ExŒRi ç:

D1
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