
Design and Analysis of Algorithms February 12, 2015
Massachusetts Institute of Technology
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 2

Problem Set 2
This problem set is due at 11:59pm on Thursday, February 19, 2015.

This assignment, like later assignments, consists of exercises and problems. Hand in solutions
to the problems only. However, we strongly advise that you work out the exercises also, since they
will help you learn the course material. You are responsible for the material they cover.

Each submitted solution should start with
your name, the course number, the problem number, your recitation section, the date, and the
names of any students with whom you collaborated.

We will often ask you to “give an algorithm” to solve a problem. Your write-up should take the
form of a short essay. Start by defining the problem you are solving and stating what your results
are. Then provide:

1. A description of the algorithm in English and, if helpful, pseudo-code.

2. A proof (or proof sketch) for the correctness of the algorithm.

3. An analysis of the running time.

We will give full credit only for correct solutions that are described clearly.

Exercise 2-1. Read CLRS, Sections 30.1 and 30.2.

Exercise 2-2. Exercise 30-2.3.

Exercise 2-3. Exercise 30-2.4.

Exercise 2-4. Read CLRS, Chapter 18.

Exercise 2-5. Exercise 18.2-5

Exercise 2-6. Exercise 18.3-2

Problem 2-1. Pattern Matching [25 points]

Suppose you are given a source string S[0 . . n − 1] of length n, consisting of symbols a and b.

Suppose further that you are given a pattern string P [0 . .m − 1] of length m « n, consisting of

symbols a, b, and ∗, representing a pattern to be found in string S. The symbol ∗ is a “wild card”

symbol, which matches a single symbol, either a or b. The other symbols must match exactly.

The problem is to output a sorted list M of valid “match positions”, which are positions j in S
such that pattern P matches the substring S[j . . j + |P | − 1]. For example, if S = a b a b b a b and

P = a b ∗, then the output M should be [0, 2].

6.046J/18.410J

Please turn in each problem solution separately.

2 Problem Set 2

(a)	 [4 points] Describe a straightforward, naı̈ve algorithm to solve the problem. Your

algorithm should run in time O(nm).

(b)	 [12 points] Give an algorithm to solve the problem by reducing it to the problem

of polynomial multiplication. Specifically, describe how to convert strings S and P
into polynomials such that the product of the polynomials allows you to determine the

answer M . Give examples to illustrate your polynomial representation of the inputs

and your way of determining outputs from the product, based on the example S and

P strings given above.

(c)	 [3 points] Suppose you combine your solution to Part (b) with an FFT algorithm for

polynomial multiplication, as presented in Lecture 3. What is the time complexity of

the resulting solution to the string matching problem?

(d)	 [6 points] Now consider the same problem but with a larger symbol alphabet. Specif­
ically, suppose you are given a representation of a DNA strand as a string D[0 . . n−1]
of length n, consisting of symbols A, C, G, and T ; and you are given a pattern string

P [0 . .m − 1] of length m « n, consisting of symbols A, C, G, T , and ∗.

The problem is, again, to output a sorted list M of valid “match positions”, which are
positions j in D such that pattern P matches the substring D[j . . j + |P | − 1]. For
example, if D = AC GAC C AT and P = AC ∗ A, then the output M should be
[0, 3].
Based on your solutions to Parts (b) and (c), give an efficient algorithm for this setting.
Illustrate your algorithm on the example above.

Problem 2-2. Combining B-trees [25 points]

Consider a new B-tree operation COMBINE(T1, T2, k). This operation takes as input two B-trees T1
and T2 with the same minimum degree parameter t, plus a new key k that does not appear in either
T1 or T2. We assume that all the keys in T1 are strictly smaller than k and all the keys in T2 are
strictly larger than k. The COMBINE operation produces a new B-tree T , with the same minimum
degree t, whose keys are those in T1, those in T2, plus k. In the process, it destroys the original
trees T1 and T2.

In this problem, you will design an algorithm to implement the COMBINE operation. Your algo­
rithm should run in time O(|h1 − h2| + 1), where h1 and h2 are the heights of trees T1 and T2
respectively. In analyzing the costs, you should regard t as a constant.

(a)	 [5 points] First consider the special case of the problem in which h1 is assumed to be

equal to h2. Give an algorithm to combine the trees that runs in constant time.

(b)	 [5 points] Consider another special case, in which h1 is assumed to be exactly equal

to h2 + 1. Give a constant-time algorithm to combine the trees.

(c)	 [5 points] Now consider the more general case in which h1 and h2 are arbitrary.

Because the algorithm must work in such a small amount of time, and must work

for arbitrary heights, a first step is to develop a new kind of augmented B-tree data

3 Problem Set 2

structure in which each node x always carries information about the height of the
subtree below x. Describe how to augment the common B-tree insertion and deletion
operations to maintain this information, while still maintaining the asymptotic time
complexity of all operations.

(d)	 [10 points] Now give an algorithm for combining two B-trees T1 and T2, in the general

case where h1 and h2 are arbitrary. Your algorithm should run in time O(|h1 −h2|+1).

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

