
Design and Analysis of Algorithms February 26, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 3 Solutions 

Problem Set 3 Solutions 

This problem set is due at 11:59pm on Thursday, February 26, 2015. 

Exercise 3-1. Read CLRS, Section 20.3. 

Exercise 3-2. Exercise 20-3.1. 

Exercise 3-3. Exercise 20-3.2. 

Problem 3-1. Variants on van Emde Boas [25 points] 

For each of the following variants on the van Emde Boas data structures (presented in Lecture 4 
and CLRS, Section 20.3), carefully describe what changes are needed to the pseudocode (from 
either lecture or the textbook), and analyze the costs of the vEB operations INSERT, DELETE, and 
SUCCESSOR, comparing them with the costs of the same operations for the original vEB structure. 

(a)	 [7 points] Instead of dividing the structure into u1/2 groups of u1/2 numbers each, use
 
u1/3 groups of u2/3 numbers each.
 

Solution: The pseudocode doesn’t change, except for the different division into 
clusters. The operations MIN and MAX take constant time. 
For MEMBER, we have the recurrence 

T (u) = T (u 2/3) + c.
 

Previously, we had the recurrence T (u) = T (u1/2) + c, which solved (see CLRS) to
 

T (u) = O(c lg lg u) = O(c log2 log2 u).
 

For the new recurrence, following the same solution method, we get 

O(c log3/2 log2 u), 

which is the same order of magnitude, with a slightly larger constant.
 
For SUCCESSOR, PREDECESSOR, INSERT, and DELETE, we get the recurrence
 

T (u) = max{T (u 1/3), T (u 2/3)} + c = T (u 2/3) + c. 

So we have the same analysis as for MEMBER, yielding 

O(c log3/2 log2 u) = O(lg lg u). 

6.046J/18.410J



2 Problem Set 3 Solutions 

(b)	 [18 points] In addition to excluding the minimum element from lower-level vEB struc­
tures, also exclude the maximum element from lower-level vEB structures (and store 
it in the already existing max attribute). (Use the original division into u1/2 groups of 
u1/2 numbers here.) 

Solution: We rewrite portions of the code in CLRS Section 20.3 that involve min 
and max . The order-of-magnitude of the complexity does not change. 

The initialization of the empty data structure is as before. For MIN and MAX queries, 
the code is unchanged. Because we are treating MIN and MAX symmetrically, SUC­
CESSOR and PREDECESSOR are now symmetric with each other. 

SUCCESSOR: Start with the code on p. 551. Lines 1-11 and 14-15 are unchanged. 
Lines 12-13 must be modified, however, to take into account the case where the suc­
cessor may reside in no cluster at all; this is similar to lines 13-14 of the old predeces­
sor code on p. 552. Thus, in place of the current lines 12-13, we write: 

VEB-TREE-SUCCESSOR(V, x) 

10 [ This replaces lines 12-13 in the original code. 
11 if succ-cluster = NIL 

12 if V.max  = NIL and x < V.max 
13 return V.max 
14 else return NIL 

PREDECESSOR: Now predecessor is symmetric with successor. In fact, the predeces­
sor code stays the same as the code on page 552. 

INSERT: The modified code is as follows: 

ONE-ELEMENT-TREE-INSERT(V, x) 

1 [ This should be called when V.min = V.max 
2 if x > V.min 
3 V.max = x 
4 else V.min = x 



3 Problem Set 3 Solutions 

VEB-TREE-INSERT(V, x) 

1 if V.min == NIL 

2 VEB-EMPTY-TREE-INSERT(V,x) 
3 elseif V.min == V.max 
4 ONE-ELEMENT-TREE-INSERT(V,x)
 
5 else
 
6 if x < V.min
 
7 exchange x with V.min
 
8 elseif x > V.max
 
9 exchange x with V.max
 

10 if VEB-TREE-MINIMUM(V.cluster [high(x)]) == NIL 

11 VEB-TREE-INSERT(V.summary ,high(x)) 
12 VEB-EMPTY-TREE-INSERT(V.cluster [high(x)],low(x)) 
13 else 
14 VEB-TREE-INSERT(V.cluster [high(x)],low(x)) 

DELETE: The modified code is as follows. 

VEB-TREE-DELETE(V, x) 

1 if V.min == V.max 
2 V.min = NIL 

3 V.max = NIL 

4 elseif VEB-TREE-MINIMUM(V.summary) == NIL 

5 if x = V.min 
6 V.min = V.max 
7 elseif x = V.max 
8 V.max = V.min 
9 else 

10 if x == V.min 
11 first-cluster = VEB-TREE-MINIMUM(V.summary) 
12 x = index(first-cluster , 
13 VEB-TREE-MINIMUM(V.cluster[first-cluster ])) 
14 V.min = x 
15 elseif x == V.max 
16 last-cluster = VEB-TREE-MAXIMUM(V.summary) 
17 x = index(last-cluster , 
18 VEB-TREE-MAXIMUM(V.cluster[last-cluster ])) 
19 V.max = x 
20 VEB-TREE-DELETE(V.cluster [high(x)], low(x)) 
21 if VEB-TREE-MINIMUM(V.cluster [high(x)], low(x)) == NIL 

22 VEB-TREE-DELETE(V.summary , high(x)) 

We explain the edits to the code in CLRS p. 554. Lines 1-3 stay the same since they
 



4 Problem Set 3 Solutions 

are simply testing the 1-element special case for V . Now we add a new 2-element 
special case after line 3. Note that summary is empty because the structure contains 
just the max and min and neither appears in the clusters. 

VEB-TREE-DELETE(V, x)
 

[ Lines 1-3 are as in the book
 
1 if V.min == V.max
 
2 V.min = NIL
 

3 V.max = NIL
 

4 elseif VEB-TREE-MINIMUM(V.summary) == NIL
 

[ This deals with the case where the summary is empty
 
5 if x = V.min
 
6 V.min = V.max
 
7 elseif x = V.max
 
8 V.max = V.min
 

At this point in the execution, we know that the structure contains at least 3 elements. 
Thus, we don’t need the base case, lines 4-8, since each base structure can contain at 
most two elements. Starting from line 9, a lot changes, since we are treating min and 
max symmetrically. So we can write: 

VEB-TREE-DELETE(V, x)
 

8 [ Lines 4-8 from the original precede this.
 
9 else
 

10 if x == V.min
 
11 [ The logic from lines 10-12 in the original goes here
 
12 elseif x == V.max
 
13 [ The logic from lines 10-12 in the original goes here
 
14 [ but with VEB-TREE-MAXIMUM(V.summary), last-cluster ,
 
15 [ VEB-TREE-MAXIMUM(V.cluster [last-cluster ]),
 
16 [ and setting V.max = x in the final line
 

For this code, note that the clusters of V cannot all be empty because V contains at 
least 3 elements. So the operations above on V.summary actually return values. 
The net effect of these lines is to reset x so it now refers to an element to be deleted 
from some cluster within V . The new x may be placed in min or max , if appropriate. 
After this code, keep line 13 from the original Delete code, which deletes the element 
from its cluster, as well as lines 14-15, which delete the cluster from the summary if 
necessary. We omit lines 16-23, because they address the case where we are deleting 
the maximum element of V , which we have already handled. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



