
Design and Analysis of Algorithms March 20, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 6 

Problem Set 6 

This problem set is due at 11:59pm on Thursday, April 2, 2015. 

Each submitted solution should start with your name, the course number, the problem number, 
your recitation section, the date, and the names of any students with whom you collaborated. 

Exercise 6-1. Read CLRS, Chapter 25. 

Exercise 6-2. Exercise 25.3-2. 

Exercise 6-3. Exercise 25.3-5. 

Exercise 6-4. Read CLRS, Chapter 23. 

Exercise 6-5. Exercise 23.2-4. 

Exercise 6-6. Exercise 23.2-5. 

Problem 6-1. Dynamic and Bounded-Hop All-Pairs Shortest Paths [25 points] 

This problem explores some extensions of the All-Pairs Shortest Paths (APSP) algorithms covered 
in lecture and in CLRS. All parts of this problem assume nonnegative real weights. We assume 
that the vertices are numbered 1, 2, . . . , n. 

Weighted directed graphs may be used to model communication networks, and shortest distances 
(shortest-path weights) between nodes may be used to suggest routes for messages. However, most 
communication networks are dynamic, i.e., the weights of edges may change over time. So it is 
useful to have a way of modifying distance estimates to reflect these changes. 

(a)	 [6 points] Give an efficient algorithm that, given a weighted directed graph G =
 
(V, E, W ), a correct distance matrix D for G, a corresponding predecessor matrix Π,
 
and a triple (i, j, r), where i, j ∈ V and r is a nonnegative real, modifies D and Π to
 
reflect the effects of changing wi,j to r.
 
Your algorithm will need to handle three cases: r = wi,j , r < wi,j , and r > wi,j . For 
each of the cases, analyze your algorithm. (Note: Your worst case running time for 
one of these cases may not be better than O(V 3).) 

(b)	 [4 points] Give an example of a weighted directed graph G = (V, E, W ), a distance
 
matrix D, and a triple (i, j, r) such that any algorithm that modifies D to reflect the
 
effects of changing wi,j to r must take Ω(V 2) time.
 

6.046J/18.410J



2 Problem Set 6 

Now suppose that we add a new constraint to the problem — an upper bound of h on the number 
of hops (edges) in the paths we want to consider. More formally, given a weighted digraph G = 
(V, E, W ) and a positive integer h, 0 ≤ h ≤ n − 1, we would like to produce a distance matrix D 
giving the shortest distances for at-most-h-hop paths. 

(c)	 [5 points] Adapt the Floyd-Warshall algorithm to solve the bounded-hop APSP prob­
lem. Analyze its complexity in terms of graph parameters and h.
 

(d)	 [5 points] Adapt the matrix multiplication strategy from Section 25.1 to solve the
 
bounded-hop APSP problem. Analyze its complexity in terms of graph parameters
 
and h. Try to get logarithmic dependence on h.
 

(e)	 [5 points] Finally, consider a dynamic version of the bounded-hop APSP problem.
 
Design an algorithm that is given the following as input:
 

1. a weighted directed graph G = (V, E, W ); 
2. a hop count h, 0 ≤ h ≤ n − 1; 
3. a correct distance matrix D yielding shortest at-most-h-hop distances, and possi­

bly additional distance information that is useful for solving this problem; and 
4. a triple (i, j, r), where i, j ∈ V and r is a nonnegative real. 

Your algorithm should modify D to reflect the effects of changing wi,j to r, and should 
also update any additional distance information that you have added. As for Part (a), 
your algorithm will need to handle three cases: r = wi,j , r < wi,j , and r > wi,j . For 
each of the cases, analyze your algorithm’s complexity, in terms of graph parameters 
and h. 

Problem 6-2. Minimum Spanning Trees with Unique Edge Weights [25 points] 

Consider an undirected graph G = (V, E) with a weight function w providing nonnegative real-
valued weights, such that the weights of all the edges are different. 

(a)	 [5 points] Prove that, under the given uniqueness assumption, G has a unique Mini­
mum Spanning Tree.
 

Each of the next three parts outlines an MST algorithm for graphs with unique edge weights. In 
each case, say whether this is a correct MST algorithm or not. If so, give a proof, a more detailed 
description of an efficient algorithm, and an analysis. If not, give a specific counterexample. (We 
are omitting the point values for these parts because we will assign more points to algorithms and 
fewer to counterexamples.) 

(b) [Batched Edge-Addition MST] 
The algorithm maintains a set A of edges that are known to be in the MST. Initially, 
A is empty. The algorithm operates in phases; in each, it adds a batch of one or more 
edges to A. Phases continue until we have a spanning tree. 



3 Problem Set 6 

Specifically, in each phase, the algorithm does the following: For each component 
tree C in the forest formed by A, identify the lightest weight edge eC crossing the 
cut between C and the rest of the components. After determining these edges for all 
component trees, add all of the edges eC to A, in one batch. 

(c) [Divide-and-Conquer MST] 
The algorithm uses a simple Divide-and-Conquer strategy: Divide the set V of ver­
tices arbitrarily into disjoint sets V1 and V2, each of size roughly V/2. Define graph 
G1 = (V1, E1), where E1 is the subset of E for which both endpoints are in V1. Define 
G2 = (V2, E2) analogously. 
Recursively find (unique) MSTs for both G1 and G2; call them T1 and T2. Then find 
the (unique) lightest edge that crosses the cut between the two sets of vertices V1 and 
V2, and add that to form the final spanning tree T . 

(d) [Cycle-Breaking MST] 
The algorithm operates in phases. In each phase, the algorithm first finds some nonempty 
subset of the simple cycles in the graph. Then it identifies the heaviest edge on each 
cycle, and removes all these heavy edges. Phases continue until we have a spanning 
tree. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



