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Problem Set 6 Solutions 

This problem set is due at 11:59pm on Thursday, April 2, 2015. 

Exercise 6-1. Read CLRS, Chapter 25. 

Exercise 6-2. Exercise 25.3-2. 

Exercise 6-3. Exercise 25.3-5. 

Exercise 6-4. Read CLRS, Chapter 23. 

Exercise 6-5. Exercise 23.2-4. 

Exercise 6-6. Exercise 23.2-5. 

Problem 6-1. Dynamic and Bounded-Hop All-Pairs Shortest Paths [25 points] 

This problem explores some extensions of the All-Pairs Shortest Paths (APSP) algorithms covered 
in lecture and in CLRS. All parts of this problem assume nonnegative real weights. We assume 
that the vertices are numbered 1, 2, . . . , n. 

Weighted directed graphs may be used to model communication networks, and shortest distances 
(shortest-path weights) between nodes may be used to suggest routes for messages. However, most 
communication networks are dynamic, i.e., the weights of edges may change over time. So it is 
useful to have a way of modifying distance estimates to reflect these changes. 

(a)	 [6 points] Give an efficient algorithm that, given a weighted directed graph G =
 
(V, E, W ), a correct distance matrix D for G, a corresponding predecessor matrix Π,
 
and a triple (i, j, r), where i, j ∈ V and r is a nonnegative real, modifies D and Π to
 
reflect the effects of changing wi,j to r.
 
Your algorithm will need to handle three cases: r = wi,j , r < wi,j , and r > wi,j . For 
each of the cases, analyze your algorithm. (Note: Your worst case running time for 
one of these cases may not be better than O(V 3).) 

Solution: The algorithm should behave differently in these three cases: 

1.	 r = wi,j .
 
No changes are needed, since no shortest path can change.
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2.	 r < wi,j . 
In this case, we may improve the distances for some pairs of vertices: for each 
pair (x, y) of vertices, x  = y, set 

dx,y = min(dx,i + r + dj,y, dx,y). 

The two terms in the min expression are as follows: 
•	 The first term is for the case where the new shortest path from x to y contains 

the edge (i, j). 
•	 The second term is for the case where the new shortest path from x to y does 

not contain the edge (i, j), in which case the shortest path remains unchanged. 
Note that, in the first case, the values of dx,i and dj,y do not change as a result of 
this adjustment, because the edge (i, j) cannot be included in a shortest path from 
x to i or a shortest path from j to y. 
The total time to recalculate D is O(V 2) (since we need to consider all pairs of 
vertices i and j). The total extra space required is O(1). 
To adjust the predecessor matrix Π, we need only consider matrix entries πx,y for 
which we reduce the value of dx,y. For each of these, we consider two cases: if 
y = j, then πx,y = i, and otherwise πx,y = πj,y. Note that, in this second case, 
πj,y does not change as a result of this adjustment, because (i, j) does not appear 
in a shortest path from j to y. 
The total time to adjust Π is O(V 2), and we need only O(1) extra space. 

3.	 r > wi,j . 
In this case, we may worsen the distances for some pairs of nodes. Unfortunately, 
this seems to require recalculating best distances and parents for all nodes from 
scratch. D and Π can be recalculated in time O(V 3) using Floyd-Warshall. 

(b)	 [4 points] Give an example of a weighted directed graph G = (V, E, W ), a distance
 
matrix D, and a triple (i, j, r) such that any algorithm that modifies D to reflect the
 
effects of changing wi,j to r must take Ω(V 2) time.
 

Solution: Let G be a line graph with n vertices 1, 2, . . . , n and edges (i, i + 1) for 
all i. Suppose the weights for all these directed edges are 1. All other weights are ∞. 
Let e = (n, 1, 1). Then for every i, j, i < j, dj,i = ∞ before the modification, but 
is a positive integer after the modification. That means that Ω(n2) entries of D must 
change. 

Now suppose that we add a new constraint to the problem — an upper bound of h on the number 
of hops (edges) in the paths we want to consider. More formally, given a weighted digraph G = 
(V, E, W ) and a positive integer h, 0 ≤ h ≤ n − 1, we would like to produce a distance matrix D 
giving the shortest distances for at-most-h-hop paths. 



Problem Set 6 Solutions 3 

(c)	 [5 points] Adapt the Floyd-Warshall algorithm to solve the bounded-hop APSP prob­
lem. Analyze its complexity in terms of graph parameters and h. 

Solution: The Floyd-Warshall algorithm introduces intermediate vertices in order, 
one at a time, in |V | executions of an outer loop (see the code on p. 695 of CLRS). 
Within each execution of this loop, it considers all pairs (i, j) of vertex numbers. Each 
such pair requires time O(1) because it involves examining and comparing only three 
entries in D. 
When we add the constraint that the complete path must consist of at most h hops, the 
comparison on line 7 becomes more complicated. It must consider all the different 
ways of allocating the h hops to the two parts of the path - the part that comes before 
the new vertex k and the part that comes after k. So, we define dk,h to be the weight i,j 

of a shortest path from vertex i to vertex j for which all intermediate vertices are in 
the set 1, . . . , k with the added constraint that the path consists of at most h hops. dk,h 

i,j 

can now be expressed as, 

dk,h = min({dk−1,h} ∪ {dk−1,h� 
+ dk−1,h−h� 

| 0 ≤ h� ≤ h}).i,j i,j i,k k,j 

The total number of sub-problems is now O(V 3·h), and the time required to solve each 
sub-problem is O(h), which means the total runtime of this algorithm is O(V 3 · h2). 
For the space requirement, while calculating the results for k, we need distance in­
formation for k − 1 and all values of h, so the space complexity is now O(V 2 · h). 

(d)	 [5 points] Adapt the matrix multiplication strategy from Section 25.1 to solve the 
bounded-hop APSP problem. Analyze its complexity in terms of graph parameters 
and h. Try to get logarithmic dependence on h. 

Solution: In the description in Section 25.1, the matrix L(k) contains shortest dis­
tances using paths of at most k hops; specifically, lk is the shortest distance for a i,j 

path from i to j consisting of at most k hops. Thus, L(0) is the matrix with 0 on the
 
main diagonal and ∞ everywhere else, and for every k, L(k+1) = Lk · W , where the
 
matrix multiplication here uses min and + instead of the usual + and ×. Our goal is
 
to produce L(h).
 
If h	 = 0 then the answer is simply the matrix with 0s on the main diagonal and ∞
 
elsewhere. Now assume h ≥ 1.
 
We cannot use the successive squaring strategy from p. 689-690 directly, because that
 
would “overshoot” h if it is not a power of 2. However, we can get the logarithmic
 
dependence on h by using its binary representation, h = hlhl−1 . . . h1. Since h ≥ 1,
 

= L(1) = L(0)we have hl = 1. Start with L(hl) · W = W . Then for j = l − 1, . . . , 1, 
calculate L(hl...hj ) as follows: If hj = 0 then (L(hl))2, else (L(hl))2 · W . The final 
answer is L(hl...h1). 

http:L(hl...h1
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The number of matrix calculations is O(lg h), and each calculation takes time O(V 3), 
for a total time complexity of O(V 3 lg h). Note that this is better than the modified 
Floyd-Warshall algorithm in Part (c), which is interesting given that vanilla Floyd-
Warshall performs better on the standard All-pair Shortest Path problem. The space 
complexity is O(V 2). 

(e)	 [5 points] Finally, consider a dynamic version of the bounded-hop APSP problem.
 
Design an algorithm that is given the following as input:
 

1. a weighted directed graph G = (V, E, W ); 
2. a hop count h, 0 ≤ h ≤ n − 1; 
3. a correct distance matrix D yielding shortest at-most-h-hop distances, and possi­

bly additional distance information that is useful for solving this problem; and 
4. a triple (i, j, r), where i, j ∈ V and r is a nonnegative real. 

Your algorithm should modify D to reflect the effects of changing wi,j to r, and should 
also update any additional distance information that you have added. As for Part (a), 
your algorithm will need to handle three cases: r = wi,j , r < wi,j , and r > wi,j . For 
each of the cases, analyze your algorithm’s complexity, in terms of graph parameters 
and h. 

Solution: The additional distance information might be the entire set of matrices 
L(h)L(k), 0 ≤ k ≤ h, as defined in the solution to Part (d). Thus, D = . All of 

these can be calculated from scratch in time O(V 3 · h), using a series of successive 
multiplications by matrix W . 
Consider how to modify the solution to Part (a). The case where r = wi,j still involves 
no changes, and the case where r > wi,j involves recalculation of all the distances, in 
all the matrices, at a time cost of O(V 3 · h). 
In the case where r < wi,j , we must recalculate the distances for all ordered pairs 
(x, y) in all of the matrices; thus, we must recalculate V 2 · h entries. For each x, y, we 
define the following: 

(k ) (k−k −1)
l(k) = min({l(k)} ∪ {l + r + l | 0 ≤ k ≤ k − 1}).x,y x,y x,i j,y 

The time cost for recalculating each entry is O(k), which is O(h). So the total time 
cost is O(V 2 · h2). The space complexity is O(V 2 · h). 

Problem 6-2. Minimum Spanning Trees with Unique Edge Weights [25 points] 

Consider an undirected graph G = (V, E) with a weight function w providing nonnegative real-
valued weights, such that the weights of all the edges are different. 

′ ′ ′
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(a) [5 points] Prove that, under the given uniqueness assumption, G has a unique Mini-
mum Spanning Tree.

Solution: Suppose for the sake of contradiction that G has two different MSTs, T1
and T2. Let e be the smallest weight edge that appears in exactly one of T1 and T2 -
note that such an edge must exist since trees T1 and T2 are distinct. Without loss of
generality, suppose that e is in T1 and not in T2.
Then form a new graph T2

′ consisting of T2 with e added. Observe that T2
′ now has a

cycle. Since T1 can’t contain the entire cycle, there must be some edge e′ = e in the
cycle that is not in T1. Since we assumed that e is the smallest weight edge in one of
the trees and that e′ is in T2 but not in T1, we see that w(e′) > w(e). (We are using the
unique weight assumption here to get strict inequality.)
Then removing e′ from T2

′ yields a new spanning tree T2
′′ with smaller weight than T2.

This contradicts our initial assumption that T2 is an MST.

Each of the next three parts outlines an MST algorithm for graphs with unique edge weights. In
each case, say whether this is a correct MST algorithm or not. If so, give a proof, a more detailed
description of an efficient algorithm, and an analysis. If not, give a specific counterexample. (We
are omitting the point values for these parts because we will assign more points to algorithms and
fewer to counterexamples.)

(b) [Batched Edge-Addition MST]
The algorithm maintains a set A of edges that are known to be in the MST. Initially,
A is empty. The algorithm operates in phases; in each, it adds a batch of one or more
edges to A. Phases continue until we have a spanning tree.
Specifically, in each phase, the algorithm does the following: For each component
tree C in the forest formed by A, identify the lightest weight edge eC crossing the
cut between C and the rest of the components. After determining these edges for all
component trees, add all of the edges eC to A, in one batch.

Solution: This does yield an MST.
We can show by induction on the number of phases that the set A is always a subset
of the unique MST. For the base case, the set A contains no edges, which trivially is a
subset of the unique MST.
For the inductive step, consider a set A of edges at the beginning of some phase. By
our inductive hypothesis, the set A is a subset of the unique MST. We want to show
that at the end of the same phase, the set A′ constructed by adding some edges to A,
is still a subset of the unique MST.
For each component C in the forest formed by A, the lightest edge is part of some
MST, by CLRS Corollary 23.2. Since there is only one MST, all the chosen edges are
part of the same unique MST. Thus, when we add them all, the new set A′ obtained at
the end of the phase is still a subset of the unique MST.

6
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Detailed algorithm: 

We can implement this algorithm using a Union-Find set structure for the vertices. 
For each component in the structure, we maintain a list of edges that have exactly 
one endpoint in the component. Initially, A is empty, and we create a separate set 
for each vertex, using the MAKESET operation described in Recitation 3. We sort the 
edges in ascending order of edge weights in O(E log E) time. For each single-vertex 
component, we compute an individual list of edges incident on that component. This 
can be done by a linear pass through the sorted edge list. 
At each phase, we perform the following steps, 
•	 For each component C, we find the lightest incident edge, by looking at the first 

entry in its edge list. This takes O(1) time. All these edges are added to A. 
•	 For each edge added to A, perform a union operation between the components 

associated with the end points of the edge. 
•	 Now, we need to update the edge list for each of the merged components. This 

can be done using the two-finger algorithm from Merge sort. Each of these edge 
lists has O(Ei) elements, so the merge step takes O(Ei) time. (Here, we assume 
that component i has Ei edges, and WLOG, for arbitrary components i and j, 
Ei > Ej ) During this merge step, we need to remove all edges that now belong 
to the same component; this can be done by calling FIND on each edge of the 
merged list - the total number of edges in the merged list is O(Ei) and the time 
complexity of each FIND operation is O(α(V ), which means that the total time 
complexity of this merge step is O(Ei(1 + α(V ))). 

Note that the worst case time complexity of the merge operation per component per 
iteration is O(Ei(1 + α(V ))), leading to a worst case time complexity per iteration  
of O( i Ei(1 + α(V ))) = O(E(1 + α(V ))). Also note that the total number of 
iterations in the worst case is O(log V ) (since the number of components is reduced 
by at least a factor of two at each phase), leading to a total worst case time complexity 
of O(E log V (1 + α(V ))). 
The total length of all individual edge lists is O(E), and the space complexity of the 
Union-Find data structure that keeps track of which component a vertex belongs to is 
O(V ), which means that this algorithm has a total space complexity of O(V + E), in 
addition to the list A, which has size O(E). 

(c) [Divide-and-Conquer MST] 
The algorithm uses a simple Divide-and-Conquer strategy: Divide the set V of ver­
tices arbitrarily into disjoint sets V1 and V2, each of size roughly V/2. Define graph 
G1 = (V1, E1), where E1 is the subset of E for which both endpoints are in V1. Define 
G2 = (V2, E2) analogously. 
Recursively find (unique) MSTs for both G1 and G2; call them T1 and T2. Then find 
the (unique) lightest edge that crosses the cut between the two sets of vertices V1 and 
V2, and add that to form the final spanning tree T . 
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Solution: Incorrect. A simple counterexample is a four-node ring graph with nodes 
a, b, c, d, and edge weights w(a, b) = 1, w(b, c) = 11, w(c, d) = 2, w(d, a) = 12. 

b c 
11 

1 2 

12 
a d 

The graph could be split with V1 = {a, d} and V2 = {b, c}. Then the MSTs of the 
two halves have weights 12 and 11 respectively. Adding in the lightest cut edge (edge 
between a and b with weight 1) gives us a Spanning Tree of weight 11+ 12+ 1 = 24, 
which is clearly sub-optimal (edges (a, b), (b, c) and (c, d) yield a spanning tree of 
weight 14). 

(d) [Cycle-Breaking MST] 
The algorithm operates in phases. In each phase, the algorithm first finds some nonempty 
subset of the simple cycles in the graph. Then it identifies the heaviest edge on each 
cycle, and removes all these heavy edges. Phases continue until we have a spanning 
tree. 

Solution: This does yield an MST. Let T denote the unique MST of G. We first state 
and prove the following claim. 

Claim: For each simple cycle C in G, the heaviest edge on cycle C is not in T . 

Proof of Claim: Suppose for the sake of contradiction that the heaviest edge of some 
simple cycle C is in T . Since T cannot contain the entire cycle C, there must be some 
other edge e = e in C that is not in T . Then we can construct a new tree T from T 
by adding edge e and removing edge e. T is also a spanning tree, and its weight is 
strictly less than that of T , which is a contradiction, since we assumed that T is the 
MST. 
End of proof of Claim 

Now consider any edge e that is removed during any phase i of the algorithm. Edge 
e must be the heaviest edge of some simple cycle C of the graph G at the beginning 
of phase i. But cycle C is also a simple cycle of the original graph G, so the removed 
edge e is also the heaviest edge on a simple cycle of G. So by the Claim, edge e is not 
in T . 

Thus, the algorithm only removes edges that are not in T . Since the final graph is a 
spanning tree, and contains T , it must be equal to T . 

′ 6 ′
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Detailed algorithm: 

We can implement this algorithm as follows, 

CYCLEBREAKINGMST(G)
 

1 while |G.E| > |V | − 1
 
2 C = FINDCYCLE(G).
 
3 e = FINDMAXIMUMEDGE(C)
 
4 G = G − e
 
5 return G
 

Here, FINDCYCLE finds some cycle in the graph G and returns it - this can be imple­
mented using Depth First Search (DFS); DFS allows us to find back edges within the 
graph G in O(E) time. Once we have a cycle, we can find the maximum weight edge 
in it in O(V ) time (since a simple cycle can have at most V edges); we then remove 
this edge from the graph G and repeat the above steps on the reduced graph, until the 
graph contains no more cycles. 
The total runtime complexity of this algorithm is O(E · (E − V )) = O(E2) time. 
The total space complexity of the algorithm is O(E), since we only need to keep track 
of one simple cycle in the graph, and a simple cycle in the worst case has O(E) edges. 
Remark: Note that in the above implementation, we remove one edge from the graph 
at a time. We can often do better than this by removing multiple edges from the graph 
in a single iteration (multiple cycles could be identified in a single iteration). 
However, it is not clear how to improve the worst-case time complexity by doing this. 
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