
Design and Analysis of Algorithms April 10, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 8 

Problem Set 8 

This problem set is due at 11:59pm on Friday, April 24, 2015. 

Each submitted solution should start with your name, the course number, the problem number, 
your recitation section, the date, and the names of any students with whom you collaborated. 

Exercise 8-1. Read CLRS, Chapter 29. 

Exercise 8-2. Exercise 29.2-2. 

Exercise 8-3. Exercise 29.2-4. 

Exercise 8-4. Read CLRS, Chapter 34. 

Exercise 8-5. Exercise 34.2-8. 

Exercise 8-6. Exercise 34.3-5. 

Problem 8-1. A Simple Simplex Example [25 points] Consider a linear program (LP) consist­
ing of two variables x1 and x2 satisfying the following three constraints: 

x1 + x2 ≤ 10 

x2 ≥ 4x1 − 20 

x1 + 3x2 ≤ 24 

x1, x2 ≥ 0 

The goal is to maximize the value of the objective function p = 4x1 + x2. 

(a)	 [5 points] Draw a diagram of the feasible region. 

(b)	 [5 points] Write the given LP in standard form, and transform this standard form
 
representation into slack form.
 

(c)	 [10 points] Use Simplex to solve the resulting slack form LP. Identify the pivots
 
you choose and give the resulting modified LPs and the successive feasible solutions.
 
Indicate the successive solutions on your diagram from Part (a).
 

(d)	 [5 points] Give the dual LP of your standard-form LP from Part (b) and give its
 
optimal value. (Hint: Use your solution to Part (c).)
 

6.046J/18.410J



2 Problem Set 8 

Problem 8-2. NP-Completeness [25 points] 

In this problem, you will prove NP-completeness of a few decision problems. To prove NP-
hardness, you may reduce from any problem that has been shown, in class or in CLRS, to be 
NP-complete. 

(a)	 [5 points]
 
Let TRIPLE-SAT denote the following decision problem: given a Boolean formula
 
φ, decide whether φ has at least three distinct satisfying assignments. Prove that 
TRIPLE-SAT is NP-complete. 

(b)	 [10 points] In Problem Set 1, we considered how one might locate donut shops at
 
some of the vertices of a street network, modeled as an arbitrary undirected graph
 
G = (V, E). Each vertex u has a nonnegative integer value p(u), which describes
 
the potential profit obtainable from a shop located at u. Two shops cannot be located
 
at adjacent vertices. The problem was to design an algorithm that outputs a subset
 s 
U ⊆ V that maximizes the total profit u∈U p(u). No doubt, you found an algorithm 
with time complexity that was exponential in the graph parameters. Now we will see 
why. 
Define DONUT to be the following decision problem: given an undirected graph 
G = (V, E), given a mapping p from vertices u ∈ V to nonnegative integer profits 
p(u), and given a nonnegative integer k, decide whether there is a subset U ⊆ V suchs 
that no two vertices in U are neighbors in G, and such that u∈U p(u) ≥ k. Prove 
that DONUT is NP-hard. (Hint: Try a reduction from 3SAT.)
 
Also, explain why this implies that, if there is a polynomial-time algorithm to solve
 
the original problem, i.e., to output a subset U that maximizes the total profit, then P
 
= NP.
 

(c)	 [10 points] Suppose we have one machine and a set of n tasks a1, a2, . . . , an. Each
 
task aj requires tj units of time on the machine, yields a profit of pj , and has a deadline
 
dj . Here, the tj , pj , and dj values are nonnegative integers. The machine can process
 
only one task at a time. Not all tasks have to be run, but if a task starts running, it must
 
run without interruption and must complete by its deadline.
 
A schedule for a subset of the tasks describes when each of the tasks in the subset 
starts running. A schedule must observe the constraints given above. The profit for 
the schedule is the sum of all the pj values for the tasks aj in the schedule. 
The problem is to produce a schedule for a subset of the tasks that returns the greatest 
possible amount of profit. State this problem as a decision problem and show that it 
is NP-complete. In showing this, you may reduce from any problem that has been 
shown, in class or in CLRS, to be NP-complete. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



