
Design and Analysis of Algorithms April 29, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 8 Solutions 

Problem Set 8 Solutions 

This problem set is due at 11:59pm on Friday, April 24, 2015. 

Exercise 8-1. Read CLRS, Chapter 29. 

Exercise 8-2. Exercise 29.2-2. 

Exercise 8-3. Exercise 29.2-4. 

Exercise 8-4. Read CLRS, Chapter 34. 

Exercise 8-5. Exercise 34.2-8. 

Exercise 8-6. Exercise 34.3-5. 

Problem 8-1. A Simple Simplex Example [25 points] Consider a linear program (LP) consist­
ing of two variables x1 and x2 satisfying the following three constraints: 

x1 + x2 ≤ 10 

x2 ≥ 4x1 − 20 

x1 + 3x2 ≤ 24 

x1, x2 ≥ 0 

The goal is to maximize the value of the objective function p = 4x1 + x2. 

(a) [5 points] Draw a diagram of the feasible region. 

Solution: 
See Figure 1. 

6.046J/18.410J



2 Problem Set 8 Solutions 

Figure 1: The feasible region of the LP problem. Image courtesy of Finite mathematics & Applied 
calculus (http://www.zweigmedia.com). 

(b)	 [5 points] Write the given LP in standard form, and transform this standard form
 
representation into slack form.
 

Solution: 
Standard form:
 
Maximize p = 4x1 + x2, subject to:
 

x1 + x2 ≤ 10 

4x1 − x2 ≤ 20 

x1 + 3x2 ≤ 24 

x1, x2 ≥ 0 

Slack form: Introduce three new variables x3, x4, x5.
 
Maximize p = 4x1 + x2, subject to:
 

x3 = 10 − x1 − x2 

x4 = 20 − 4x1 + x2 

x5 = 24 − x1 − 3x2 

x1, . . . , x5 ≥ 0 

(c)	 [10 points] Use Simplex to solve the resulting slack form LP. Identify the pivots
 
you choose and give the resulting modified LPs and the successive feasible solutions.
 
Indicate the successive solutions on your diagram from Part (a).
 

http://www.zweigmedia.com


Problem Set 8 Solutions 3 

Solution: Start with x1 = x2 = 0, x3 = 10, x4 = 20, x5 = 24, that is, the solution 
(0, 0, 10, 20, 24), with objective function value p = 0. 

The first nonbasic variable we select for pivoting can be either x1 or x2, since both have 
positive coefficients in the objective function. To be specific, let’s choose x2. As we 
increase x2, the values of x3 and x5 decrease. The limiting constraint is the one for x5: 
we can only increase x2 to 8, because any more would make x5 negative. We exchange 
x2 with x5: We solve the third constraint for x2, obtaining x2 = 8 − 1

3 x1 − 1
3 x5. Then 

we substitute, resulting in the following new LP: 

Maximize p = 8 + 11 x1 − 1 x5, subject to: 
3 3 

2 1 
x3 = 2 − x1 + x5

3 3 
13 1 

x4 = 28 − x1 − x5
3 3 
1 1 

x2 = 8 − x1 − x5
3 3 

x1, . . . , x5 ≥ 0 

We get a new solution by setting the non-basic variables, x1 and x5 equal to 0 and 
calculating the others: (0, 8, 2, 28, 0). The value of the objective function is now p = 8. 

The only option now for pivoting is x1, because the coefficient of x5 in the objective 
function is negative. As we increase x1, the values of x2, x3, and x4 all decrease. The 
limiting constraint is the one for x3; we can only increase x1 to 3. We exchange x1 

with x3, and solve the first constraint for x1, obtaining x1 = 3 − 
2
3 x3 + 

2
1 x5. We get 

the following new LP: 

Maximize p = 19 − 11 x3 + 3 x5, subject to: 
2 2 

3 1 
x1 = 3 − x3 + x5

2 2 
13 5 

x4 = 15 + x3 − x5
2 2 
1 1 

x2 = 7 + x3 − x5
2 2 

x1, . . . , x5 ≥ 0 

We get a new solution by setting x3 and x5 to 0, obtaining (3, 7, 0, 14, 0). The value of 
the objective function is now p = 19. 

Next, we pivot on x5. Increasing x5 causes x4 and x2 to decrease, with the limiting 
constraint being the one for x4. We exchange x5 with x4, and obtain x5 = 6+ 13 x3 −5 
2 
5 x4. We obtain the following new LP: 



4 Problem Set 8 Solutions 

Maximize p = 28 − 8
5 x3 − 

5
3 x4, 

1 1 
x1 = 6 − x3 − x4

5 5 
13 2 

x5 = 6 + x3 − x4
5 5 
4 1 

x2 = 4 − x3 + x4
5 5 

x1, . . . , x5 ≥ 0 

We get a new solution by setting x3 and x4 to 0, obtaining (6, 4, 0, 0, 6), with an
 
objective function value of 28. At this point no further pivots are possible (their co­
efficients in the objective function are both negative). Thus, an optimal solution is
 
x1 = 6, x2 = 4.
 
In the above process, we started from the basic solution (0,0) meaning x1 = 0, x2 = 0,
 
gradually improved our estimates through (0,8), (3,7), and finally arrived at the final
 
solution (6,4). In Figure 1, this corresponds to traversing four corners of the white
 
region starting from the origin in the clockwise direction.
 

(d)	 [5 points] Give the dual LP of your standard-form LP from Part (b) and give its 
optimal value. (Hint: Use your solution to Part (c).) 

Solution: 
The standard-form LP from Part (b) is: Maximize p = 4x1 + x2, subject to: 

x1 + x2 ≤ 10 

4x1 − x2 ≤ 20 

x1 + 3x2 ≤ 24 

x1, x2 ≥ 0 

As in CLRS p. 880, the dual LP uses new variables y1, y2, and y3. The LP is: Minimize 
10y1 + 20y2 + 24y3, subject to: 

y1 + 4y2 + y3 ≥ 4 

y1 − y2 + 3y3 ≥ 1 

y1, y2, y3 ≥ 0 

By LP duality (Theorem 29.10), the minimum value for this LP is 28. This value is 
attained when y1 = 

5
8 , y2 = 

5
3 , and y3 = 0. You can find this solution manually, or 

by considering the final slack form LP in your solution in Part (c) and using formula 
(29.91) on p. 882. 



Problem Set 8 Solutions 5 

Problem 8-2. NP-Completeness [25 points] 

In this problem, you will prove NP-completeness of a few decision problems. To prove NP-
hardness, you may reduce from any problem that has been shown, in class or in CLRS, to be 
NP-complete. 

(a)	 [5 points]
 
Let TRIPLE-SAT denote the following decision problem: given a Boolean formula
 
φ, decide whether φ has at least three distinct satisfying assignments. Prove that 
TRIPLE-SAT is NP-complete. 

Solution: To show that TRIPLE-SAT is in NP, for any input formula φ, we need only
 
guess three distinct assignments and verify that they satisfy φ.
 
To show that TRIPLE-SAT is NP-hard, we reduce SAT to it. Let φ denote the input
 
Boolean formula to a SAT problem and suppose that the set of variables in φ are
 
X = {x1, . . . , xn}. We construct a TRIPLE-SAT problem with a Boolean formula φ/
 

over a new variable set X / as follows:
 

• X / = {x1, . . . , xn, y, z}. 
• φ/ = φ. 

Now we claim φ is satisfiable iff φ/ has at least 3 satisfying assignments. If φ is 
satisfiable, then we can augment any particular assignment by adding any of the 4 
possible pairs of values for {y, z} to give at least four satisfying assignments overall. 
On the other hand, if φ is not satisfiable, then neither is φ/. 

(b)	 [10 points] In Problem Set 1, we considered how one might locate donut shops at
 
some of the vertices of a street network, modeled as an arbitrary undirected graph
 
G = (V, E). Each vertex u has a nonnegative integer value p(u), which describes
 
the potential profit obtainable from a shop located at u. Two shops cannot be located
 
at adjacent vertices. The problem was to design an algorithm that outputs a subset
 s 
U ⊆ V that maximizes the total profit u∈U p(u). No doubt, you found an algorithm 
with time complexity that was exponential in the graph parameters. Now we will see 
why. 
Define DONUT to be the following decision problem: given an undirected graph 
G = (V, E), given a mapping p from vertices u ∈ V to nonnegative integer profits 
p(u), and given a nonnegative integer k, decide whether there is a subset U ⊆ V suchs 
that no two vertices in U are neighbors in G, and such that u∈U p(u) ≥ k. Prove 
that DONUT is NP-hard. (Hint: Try a reduction from 3SAT.)
 
Also, explain why this implies that, if there is a polynomial-time algorithm to solve
 
the original problem, i.e., to output a subset U that maximizes the total profit, then P
 
= NP.
 



6 Problem Set 8 Solutions 

Solution: 
Let φ = C1 ∧ C2 ∧ . . . Cm be the input formula to a 3SAT problem, where each 
clause Cc has three literals chosen from {xi, x̄i11 ≤ i ≤ n}. We construct a DONUT 
problem (G, p, k) as follows. 
The vertices V of G are {vc,j 11 ≤ c ≤ m, 1 ≤ j ≤ 3}, where vc,j corresponds to 
literal j in clause Cc. We label each vertex vc,j with xi or x̄i, whichever appears in 
position j of clause Cc. The edges E of G are of two types: 

•	 For each clause Cc, an edge between each pair of vertices corresponding to literals 
in clause Cc, that is, between vc,j1 and vc,j2 for j1  = j2. 

•	 For each i, an edge between each pair of vertices for which one is labeled by xi 

and the other by x̄i. 

The function p maps all vertices to 1. The threshold k is equal to m. We claim that φ 
is satisfiable iff the total profit in the DONUT problem (G, p, k) can be at least k. 
First, suppose that φ is satisfiable. Then there is some truth assignment A mapping 
the variables to {true, false}. A must make at least one literal per clause true; for 
each clause, select the vertex corresponding to one such literal to be in the set U . 
Since there are m clauses, this yields exactly m = k vertices, so the total profit is k. 
Moreover, we claim that U cannot contain two neighboring vertices in G. Suppose for 
contradiction that u, v ∈ U and (u, v) ∈ E. Then the edge (u, v) must be of one of the 
two types above. But u and v cannot correspond to literals in the same clause because 
we selected only one vertex for each clause. And u and v cannot be labeled by xi and 
x̄i for the same i, because A cannot make both a variable and its negation true. Since 
neither possibility can hold, U cannot contain two neighboring vertices. U achieves a 
total profit of k for the DONUT problem (G, p, k). 
Conversely, suppose that there exists U ⊆ V , |U | ≥ k = m containing no two 
neighbors in G. Since U does not contain neighbors, it cannot contain two vertices 
from the same clause. Therefore, we must have |U | = m, with exactly one vertex 
from each clause. Now define a truth assignment A for the variables: A(xi) = true if 
some vertex with label xi is in U , and A(xi) = false if some vertex with label x̄i is in 
U . For other variables the truth value can be arbitrary. Also since U does not contain 
neighbors, U cannot contain two vertices with contradictory labels, so assignment A 
is well-defined. A satisfies all clauses by making one literal corresponding to a vertex 
in U true in each clause. Therefore, A satisfies φ. 
For the last question, suppose that there is a polynomial-time algorithm to solve the 
original problem, i.e., to output a subset U that maximizes the total profit. Then 
this algorithm can be easily adapted to a polynomial-time algorithm for DONUT: 
for any (G, p, k), simply run the assumed algorithm and obtain an optimal subset U . 
Then output true if k ≤ |U |, and false otherwise. Since we have already shown that 
DONUT is NP-hard, this implies that P= NP. 



Problem Set 8 Solutions 7 

(c)	 [10 points] Suppose we have one machine and a set of n tasks a1, a2, . . . , an. Each 
task aj requires tj units of time on the machine, yields a profit of pj , and has a deadline 
dj . Here, the tj , pj , and dj values are nonnegative integers. The machine can process 
only one task at a time. Not all tasks have to be run, but if a task starts running, it must 
run without interruption and must complete by its deadline. 
A schedule for a subset of the tasks describes when each of the tasks in the subset 
starts running. A schedule must observe the constraints given above. The profit for 
the schedule is the sum of all the pj values for the tasks aj in the schedule. 
The problem is to produce a schedule for a subset of the tasks that returns the greatest 
possible amount of profit. State this problem as a decision problem and show that it 
is NP-complete. In showing this, you may reduce from any problem that has been 
shown, in class or in CLRS, to be NP-complete. 

Solution: 
Define SCHED to be the following decision problem: given (T, P, D, k) where T , 
P , and D are sequences {tj }, {pj} and {dj }, each of length n, decide whether there 
exists a subset I ⊆ {1, . . . , n} and an ordering i1, i2, . . . , im of I , such that: sj1. For every j, l=1 T (il) ≤ D(ij ). That is, the sum of the running times of the 

first j tasks being run is no greater than the deadline for the jth task. That means 
that, when run in the given order, all tasks meet their deadlines. s m	 P (il) ≥ k. That is, the total profit is at least k.2. l=1 

To see that SCHED is in NP, given an instance (T, P, D, k), we can guess a subset of 
the tasks and a sequence of start times, and verify that it meets all the constraints for a 
schedule and that it finishes within the given time k. 
To show that SCHED is NP-hard, we can reduce from SUBSET-SUM, defined on 
p. 1097 of CLRS. Given an instance (S, t) of SUBSET-SUM, where |S| = n, order 
the elements of S arbitrarily, as s1, . . . , sn. We construct an instance (T, P, D, k) of 
SCHED as follows: Let T = P = {s1, . . . , sn} in that order, let D be a length-n 
sequence consisting of t in every position, and let k = t. We claim that the answer 
to the SUBSET-SUM problem (S, t) is “yes”, iff the answer to the SCHED problem 
(T, P, D, k) is “yes”. 
First, the answer to the SUBSET-SUM problem (S, t) is “yes”. Then there is a subset 
S / of the elements in S whose sum is exactly t. Let I be the set of indices of the S / 

elements within the sequence s1, . . . , sn, and let i1, i2, . . . , im order I in increasing s 
order. Then the sum of the running times of all tasks is exactly t, that is, m

l=1 T (il) = 
t. This implies that all tasks meet their deadlines. Moreover, the total profit is exactlys m = t = k. Therefore, the answer to the SCHED problem (T, P, D, k) isl=1 P (il) 
“yes”.
 
Conversely, suppose the answer to the SCHED problem (T, P, D, k) is “yes”. Then
 
there is a subset I of 1, . . . , n and an ordering i1, i2, . . . , im of I , such that:
 sj1. For every j, l=1 T (il) ≤ D(ij ). 



8 Problem Set 8 Solutions 

m s
2. l=1 P (il) ≥ k. 

Since all of the deadlines are equal to k = t, this is the same as saying: s 
1. m

l=1 T (il) ≤ t. s m2. l=1 P (il) ≥ t. s s 
Since each T (ij ) = P (ij ), this says that m T (il) = m P (il) = t. Now let S / bel=1 l=1 
the subset of S corresponding to the indices in I , that is, S / = {si1i ∈ I}. Then the 
sum of the elements of S / is exactly t. Therefore, the answer to the SUBSET-SUM 
problem (S, t) is “yes”. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



