
Lecture 5 Amortization Spring 2015

Lecture 5: Amortization

Amortized analysis is a powerful technique for data structure analysis, involving
the total runtime of a sequence of operations, which is often what we really care
about. This lecture covers:

• Different techniques of amortized analysis

– aggregate method

– accounting method

– charging method

– potential method

• Examples of amortized analysis

– table doubling

– binary counter

– 2-3 tree and 2-5 tree

Table doubling

(Recall from 6.006) We want to store n elements in a table of size m = Θ(n). One
idea is to double m whenever n becomes larger than m (due to insertions). The cost
to double a table of size m is clearly Θ(m) = Θ(n), which is also the worse case cost
of an insertion.

But what is the total cost of n insertions? It is at most

20 + 21 + 22 + · · ·+ 2�lg n� = Θ(n).

In this case, we say each insertion has Θ(n)/n = Θ(1) amortized cost.

Aggregate Method

The method we used in the above analysis is the aggregate method: just add up the
cost of all the operations and then divide by the number of operations.

total cost of k operations
amortized cost per operation =

k
Aggregate method is the simplest method. Because it’s simple, it may not be able

to analyze more complicated algorithms.

1

6.046J

�	 �

Lecture 5	 Amortization Spring 2015

Amortized Bound Definition

Amortized cost can be, but does not have to be, average cost. We can assign any
amortized cost to each operation, as long as they “preserve the total cost”, i.e., for
any sequence of operations,

amortized cost ≥ actual cost

where the sum is taken over all operations.

For example, we can say a 2-3 tree achieves O(1) amortized cost per create, O(lg n ∗)
amortized cost per insert, and 0 amortized cost per delete, where n ∗ is the maximum
size of the 2-3 tree during the entire sequence of operations. The reason we can claim
this is that for any sequence of operations, suppose there are c creations, i insertions
and d ≤ i deletions (cannot delete from an empty tree), the total amortized cost is
asymptotically the same as the total actual cost:

O(c + i lg n ∗ + 0d) = O(c + i lg n ∗ + d lg n ∗)

Later, we will tighten the amortized cost per insert to O(lg n) where n is the
current size.

Accounting Method

This method allows an operation to store credit into a bank for future use, if its
assigned amortized cost > its actual cost; it also allows an operation to pay for its
extra actual cost using existing credit, if its assigned amortized cost < its actual cost.

Table doubling

For example, in table doubling:

–	 if an insertion does not trigger table doubling, store a coin represnting c = O(1)
work for future use.

–	 if an insertion does trigger table doubling, there must be n/2 elements that are
inserted after the previous table doubling, whose coins have not been consumed.
Use up these n/2 coins to pay for the O(n) table doubling. See figure below.

–	 amortized cost for table doubling: O(n) − c · n/2 = 0 for large enough c.

–	 amortized cost per insertion: 1 + c = O(1).

2

6.046J

Lecture 5	 Amortization Spring 2015

an element a unused coin

table doubling due to the next insert

2-3 trees

Now let’s try the accounting method on 2-3 trees. Our goal is to show that insert has
O(lg n) amortized cost and delete has 0 amortized cost. Let’s try a natural approach:
save a O(lg n) coin for inserting an element, and use this coin when we delete this
element later. However, we will run into a problem: by the time we delete the element,
the size of the tree may have got bigger n' > n, and the coin we saved is not enough
to pay for the lg n' actual cost of that delete operation! This problem can be solved
using the charging method in the next section.

Charging Method

The charging method allows operations to charge cost retroactively to past operations.

amortized cost of an operation	 = actual cost of this operation

− total cost charged to past operations

+ total cost charged by future operations

Table doubling and halving

For example, in table doubling, when the table doubles from m to 2m, we can charge
Θ(m) cost to the m/2 insert operations since the last doubling. Each insert is charged
by Θ(1), and will not be charged again. So the amortized cost per insert is Θ(1).

Now let’s extend the above example with table halving. The motivation is to save
space when with deletes. If the table is down to 1/4 full, n = m/4, we shrink the
table size from m to m/2 at Θ(m) cost. This way, the table is half full again after
any resize (doubling or shrinking). Now each table doubling still has ≥ m/2 insert
operations to charge to, and each table halving has ≥ m/4 delete operations to charge
to. So the amortized cost per insert or delete is still Θ(1).

3

6.046J

� �

Lecture 5 Amortization Spring 2015

Free deletion in 2-3 trees

For another example, let’s consider insertion and deletion in 2-3 trees. Again, our
goal is to show that insert has O(lg n) amortized cost, where n is the size of the tree
when that insert happens, and delete has 0 amortized cost.

Insert does not need to charge anything.
Delete will charge an insert operation. But we will not charge the insert of the

element to be deleted, because we will run into the same problem as the accounting
method. Instead, each delete operation will charge the insert operation that brought
the tree to its current size n. Each insert is still charged at most once, because for
the tree size to reach n again, another insert must happen.

Potential Method

This method defines a potential function Φ that maps a data structure (DS) configu
ration to a value. This function Φ is equivalent to the total unused credits stored up
by all past operations (the bank account balance). Now

amortized cost of an operation = actual cost of this operation + ΔΦ

and

amortized cost = actual cost + Φ(final DS) − Φ(initial DS).

In order for the amortized bound to hold, Φ should never go below Φ(initial DS)
at any point. If Φ(initial DS) = 0, which is usually the case, then Φ should never go
negative (intuitively, we cannot ”owe the bank”).

Relation to accounting method

In accounting method, we specify ΔΦ, while in potential method, we specify Φ. One
determines the other, so the two methods are equivalent. But sometimes one is more
intuitive than the other.

Binary counter

Our first example of potential method is incrementing a binary counter. E.g.,

0011010111

increment ↓

0011011000

4

6.046J

Lecture 5 Amortization Spring 2015

Cost of increment is Θ(1 + #1), where #1 represents the number of trailing 1 bits.
So the intuition is that 1 bits are bad.

Define Φ = c ·#1. Then for large enough c,

amortized cost = actual cost + ΔΦ

= Θ(1 + #1) + c(−#1 + 1)

= Θ(1)

Φ(initial DS) = 0 if the counter starts at 000 · · · 0. This is necessary for the above
amortized analysis. Otherwise, Φ may become smaller than Φ(initial DS).

Insert in 2-3 trees

Insert can cause O(lg n) splits in the worst case, but we can show it causes only O(1)
amortized splits. First consider what causes a split: insertion into a 3-node (a node
with 3 children). In that case, the 3-node needs to split into two 2-nodes.

So 3-nodes are bad. We define Φ = the number of 3-nodes. Then ΔΦ ≤ 1 −
the number of splits. Amortized number of splits = actual number of splits + ΔΦ =
1. Φ(initial DS) = 0 if the tree is empty initially.

The above analysis holds for any (a, b)-tree, if we define Φ to be the number of
b-nodes.

If we consider both insertion and deletion in 2-3 trees, can we claim both O(1) splits
for insert, and O(1) merges for delete? The answer is no, because a split creates two
2-nodes, which are bad for merge. In the worse case, they may be merged by the next
delete, and then need split again on the next insert, and so on.

What do we solve this problem? We need to prevent split and merge from creating
‘bad’ nodes.

Insert and delete in 2-5 trees

We can claim O(1) splits for insert, and O(1) merges for delete in 2-5 trees.
In 2-5 trees, insertion into a 5-node (a node with 5 children) causes it to split into

two 3-nodes.

promote to parent

e

5 k e y s 5 k y s
6 children 3 children 3 children

5

6.046J

Lecture 5 Amortization Spring 2015

Deletion from a 2-node causes it to merge with another 2-node to form a 3-node.

demote from parent

x

1
 x 1

key demoted 2 children 3 children
1 child left

5-nodes and 2-nodes are bad. We define Φ = # of 5-nodes + # of 2-nodes.
Amortized splits and merges = 1. Φ(initial DS) = 0 if the tree is empty initially.

The above analysis holds for any (a, b)-tree where b > 2a, because splits and
merges do not produce bad nodes. We define Φ to be the number of b-nodes plus the
number of a nodes.

Note: The potential examples could also be done with the accounting method by
placing coins on 1s (binary counter) or 2/5-nodes ((2, 5)-trees).

6

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

