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Lecture 5: Amortization
 

Amortized analysis is a powerful technique for data structure analysis, involving 
the total runtime of a sequence of operations, which is often what we really care 
about. This lecture covers: 

• Different techniques of amortized analysis 

– aggregate method 

– accounting method 

– charging method 

– potential method 

• Examples of amortized analysis 

– table doubling 

– binary counter 

– 2-3 tree and 2-5 tree 

Table doubling 

(Recall from 6.006) We want to store n elements in a table of size m = Θ(n). One 
idea is to double m whenever n becomes larger than m (due to insertions). The cost 
to double a table of size m is clearly Θ(m) = Θ(n), which is also the worse case cost 
of an insertion. 

But what is the total cost of n insertions? It is at most 

20 + 21 + 22 + · · ·+ 2�lg n� = Θ(n). 

In this case, we say each insertion has Θ(n)/n = Θ(1)  amortized cost. 

Aggregate Method 

The method we used in the above analysis is the aggregate method: just add up the 
cost of all the operations and then divide by the number of operations. 

total cost of k operations 
amortized cost per operation = 

k 
Aggregate method is the simplest method. Because it’s simple, it may not be able 

to analyze more complicated algorithms. 
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Amortized Bound Definition 

Amortized cost can be, but does not have to be, average cost. We can assign any 
amortized cost to each operation, as long as they “preserve the total cost”, i.e., for 
any sequence of operations, 

amortized cost ≥ actual cost 

where the sum is taken over all operations. 

For example, we can say a 2-3 tree achieves O(1) amortized cost per create, O(lg n ∗) 
amortized cost per insert, and 0 amortized cost per delete, where n ∗ is the maximum 
size of the 2-3 tree during the entire sequence of operations. The reason we can claim 
this is that for any sequence of operations, suppose there are c creations, i insertions 
and d ≤ i deletions (cannot delete from an empty tree), the total amortized cost is 
asymptotically the same as the total actual cost: 

O(c + i lg n ∗ + 0d) =  O(c + i lg n ∗ + d lg n ∗ ) 

Later, we will tighten the amortized cost per insert to O(lg n) where  n is the 
current size. 

Accounting Method 

This method allows an operation to store credit into a bank for future use, if its 
assigned amortized cost > its actual cost; it also allows an operation to pay for its 
extra actual cost using existing credit, if its assigned amortized cost < its actual cost. 

Table doubling 

For example, in table doubling: 

–	 if an insertion does not trigger table doubling, store a coin represnting c = O(1) 
work for future use. 

–	 if an insertion does trigger table doubling, there must be n/2 elements that are 
inserted after the previous table doubling, whose coins have not been consumed. 
Use up these n/2 coins to pay for the O(n) table doubling. See figure below. 

–	 amortized cost for table doubling: O(n) − c · n/2 = 0 for large enough c. 

–	 amortized cost per insertion: 1 + c = O(1). 
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an element a unused coin 

table doubling due to the next insert
 

2-3 trees 

Now let’s try the accounting method on 2-3 trees. Our goal is to show that insert has 
O(lg n) amortized cost and delete has 0 amortized cost. Let’s try a natural approach: 
save a O(lg n) coin for inserting an element, and use this coin when we delete this 
element later. However, we will run into a problem: by the time we delete the element, 
the size of the tree may have got bigger n' > n, and the coin we saved is not enough 
to pay for the lg n' actual cost of that delete operation! This problem can be solved 
using the charging method in the next section. 

Charging Method 

The charging method allows operations to charge cost retroactively to past operations. 

amortized cost of an operation	 = actual cost of this operation 

− total cost charged to past operations 

+ total cost charged by future operations 

Table doubling and halving 

For example, in table doubling, when the table doubles from m to 2m, we can charge 
Θ(m) cost to the  m/2 insert operations since the last doubling. Each insert is charged 
by Θ(1), and will not be charged again. So the amortized cost per insert is Θ(1). 

Now let’s extend the above example with table halving. The motivation is to save 
space when with deletes. If the table is down to 1/4 full, n = m/4, we shrink the 
table size from m to m/2 at Θ(m) cost. This way, the table is half full again after 
any resize (doubling or shrinking). Now each table doubling still has ≥ m/2 insert 
operations to charge to, and each table halving has ≥ m/4 delete operations to charge 
to. So the amortized cost per insert or delete is still Θ(1). 
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Free deletion in 2-3 trees 

For another example, let’s consider insertion and deletion in 2-3 trees. Again, our 
goal is to show that insert has O(lg n) amortized cost, where n is the size of the tree 
when that insert happens, and delete has 0 amortized cost. 

Insert does not need to charge anything. 
Delete will charge an insert operation. But we will not charge the insert of the 

element to be deleted, because we will run into the same problem as the accounting 
method. Instead, each delete operation will charge the insert operation that brought 
the tree to its current size n. Each insert is still charged at most once, because for 
the tree size to reach n again, another insert must happen. 

Potential Method 

This method defines a potential function Φ that maps a data structure (DS) configu
ration to a value. This function Φ is equivalent to the total unused credits stored up 
by all past operations (the bank account balance). Now 

amortized cost of an operation = actual cost of this operation + ΔΦ 

and 

amortized cost = actual cost + Φ(final DS) − Φ(initial DS). 

In order for the amortized bound to hold, Φ should never go below Φ(initial DS) 
at any point. If Φ(initial DS) = 0, which is usually the case, then Φ should never go 
negative (intuitively, we cannot ”owe the bank”). 

Relation to accounting method 

In accounting method, we specify ΔΦ, while in potential method, we specify Φ. One 
determines the other, so the two methods are equivalent. But sometimes one is more 
intuitive than the other. 

Binary counter 

Our first example of potential method is incrementing a binary counter. E.g., 

0011010111 

increment ↓ 

0011011000 
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Cost of increment is Θ(1 + #1), where #1 represents the number of trailing 1 bits. 
So the intuition is that 1 bits are bad. 

Define Φ = c ·#1. Then for large enough c, 

amortized cost = actual cost + ΔΦ 

=  Θ(1 + #1) +  c(−#1 + 1)  

= Θ(1)  

Φ(initial DS) = 0 if the counter starts at 000 · · · 0. This is necessary for the above 
amortized analysis. Otherwise, Φ may become smaller than Φ(initial DS). 

Insert in 2-3 trees 

Insert can cause O(lg n) splits in the worst case, but we can show it causes only O(1) 
amortized splits. First consider what causes a split: insertion into a 3-node (a node 
with 3 children). In that case, the 3-node needs to split into two 2-nodes. 

So 3-nodes are bad. We define Φ = the number of 3-nodes. Then ΔΦ ≤ 1 − 
the number of splits. Amortized number of splits = actual number of splits + ΔΦ = 
1. Φ(initial DS) = 0 if the tree is empty initially. 

The above analysis holds for any (a, b)-tree, if we define Φ to be the number of 
b-nodes. 

If we consider both insertion and deletion in 2-3 trees, can we claim both O(1) splits 
for insert, and O(1) merges for delete? The answer is no, because a split creates two 
2-nodes, which are bad for merge. In the worse case, they may be merged by the next 
delete, and then need split again on the next insert, and so on. 

What do we solve this problem? We need to prevent split and merge from creating 
‘bad’ nodes. 

Insert and delete in 2-5 trees 

We can claim O(1) splits for insert, and O(1) merges for delete in 2-5 trees. 
In 2-5 trees, insertion into a 5-node (a node with 5 children) causes it to split into 

two 3-nodes. 

promote to parent 

e
 
5 k e y s 5 k y s 
6 children 3 children 3 children
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Deletion from a 2-node causes it to merge with another 2-node to form a 3-node. 

demote from parent 

x
 
1
 x 1 

key demoted 2 children 3 children 
1 child left 

5-nodes and 2-nodes are bad. We define Φ = # of 5-nodes + # of 2-nodes. 
Amortized splits and merges = 1. Φ(initial DS) = 0 if the tree is empty initially. 

The above analysis holds for any (a, b)-tree where b >  2a, because splits and 
merges do not produce bad nodes. We define Φ to be the number of b-nodes plus the 
number of a nodes. 

Note: The potential examples could also be done with the accounting method by 
placing coins on 1s (binary counter) or 2/5-nodes ((2, 5)-trees). 
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