
�

Lecture 12 Minimum Spanning Tree  Spring 2015
 

Lecture 12: Greedy Algorithms and
 
Minimum Spanning Tree
 

Introduction 

• Optimal Substructure 

• Greedy Choice Property 

• Prim’s algorithm 

• Kruskal’s algorithm 

Definitions 

Recall that a greedy algorithm repeatedly makes a locally best choice or decision, but 
ignores the effects of the future. 

A tree is a connected, acyclic graph. 
A spanning tree of a graph G is a subset of the edges of G that form a tree and 

include all vertices of G. 
Finally, the Minimum Spanning Tree problem: Given an undirected graph G = 

(V,E) and edge weights W : E → R, find a spanning tree T of minimum weight 

e∈T w(e). 

A naive algorithm 

The obvious MST algorithm is to compute the weight of every tree, and return the 
tree of minimum weight. Unfortunately, this can take exponential time in the worst 
case. Consider the following example: 

If we take the top two edges of the graph, the minimum spanning tree can consist 
of any combination of the left and right edges that connect the middle vertices to the 
left and right vertices. Thus in the worst case, there can be an exponential number 
of spanning trees. 

Instead, we consider greedy algorithms and dynamic programming algorithms to 
solve MST. We will see that greedy algorithms can solve MST in nearly linear time. 

1
 

6.046J



Lecture 12	 Minimum Spanning Tree  Spring 2015
 

Properties of Greedy Algorithms 

Problems that can be solved by greedy algorithms have two main properties: 

•	 Optimal Substructure: the optimal solution to a problem incorporates the op
timal solution to subproblem(s) 

•	 Greedy choice property: locally optimal choices lead to a globally optimal so
lution 

We can see how these properties can be applied to the MST problem 

Optimal substructure for MST 

Consider an edge e = {u, v}, which is an edge of some MST. Then we can contract e 
by merging the vertices u and v to create a new vertex. Then any edge adjacent to 
vertex u or v is adjacent to the newly created vertex, and the process could result in 
a multiedge if u and v have a mutual neighbor. We resolve the multiedge problem by 
creating a single edge with the minimum weight between the two edges. 

This leads us to the following lemma: 

Lemma 1. If T ' is a minimum spanning tree of G/e, then  T ' ∪ {e} is an MST of G. 

Proof. Let T ∗ be an MST of G containing the edge e. Then  T ∗/e is a spanning tree 
of G' = G/{e}. By definition, T ' is an MST of G'. Thus the total weight of T ' is less 
than or equal to that of T ∗/e, or w(T ') ≤ w(T ∗/e). Then 

w(T ) =  w(T ') +  w(e) ≤ w(T ∗ /e) +  w(e) =  w(T ') 

. 

The statement can be used as the basis for a dynamic programming algorithm, in 
which we guess an edge that belongs to the MST, retract the edge, and recurse. At 
the end, we decontract the edge and add e to the MST. 

The lemma guarantees that this algorithm is correct. However, this algorithm is 
requires exponential time, because there are an exponential number of edges that we 
can guess to form our MST. 

We make the algorithm polynomial time by removing the guessing process. 

2
 

6.046J



Lecture 12 Minimum Spanning Tree  Spring 2015
 

Greedy Choice Property 

The MST problem can be solved by a greedy algorithm because the the locally optimal 
solution is also the globally optimal solution. This fact is described by the Greedy-

Choice Property for MSTs, and its proof of correctness is given via a “cut and paste” 
argument common for greedy proofs. 

Lemma 2 (Greedy-Choice Property for MST). For any cut (S, V \ S) in a graph 
G = (V, E, w), any least-weight crossing edge e = {u, v} with u ∈ S and v /∈ S is in 
some MST of G. 

Proof. First, consider an MST T of G. Then  T has a path from u to v. Because 
u ∈ S and v /∈ S, the path has some edge e ' = {u ' , v  ' } which also crosses the cut. 
Then T ' = T \ {e ' } ∪ {e} is a spanning tree of G and w(T ' ) =  w(T ) − w(e ' ) +  w(e), 
but e is a least-weight edge crossing (S, V \S). Thus w(e) ≤ w(e ' ), so w(T ' ) ≤ w(T ). 
Therefore T ' is an MST too. 

Prim’s Algorithm 

Now, we can apply the insights from the optimal structure and greedy choice property 
to build a polynomial-time, greedy algorithm to solve the minimum spanning tree 
problem. 

Prim’s Algorithm Psuedocode 

1 Maintain priority queue Q on V \ S, where  v.key = min{w(u, v) | u ∈ S}

2 Q = V
 
3 Choose arbitrary start vertex s ∈ V , s.key = ∅
 
4 for v in V \ {s}

5 v.key = ∞
 
6 while Q is not empty
 
7 u = Extract-Min(Q), add u to S
 
8 for v ∈ Adj[u]
 
9 if v ∈ Q and v /∈ S and w(u, v) < v.key:
 
10 v.key = w(u, v) (via a Decrease-Key operation)
 
11 v.parent = u
 
12 return {{v, v.parent} | v ∈ V \ {s}}
 

In the above pseudocode, we choose an arbitrary start vertex, and attempt to 
sequentially reduce the distance to all vertices. After attempting to find the lowest 

3
 

6.046J



Lecture 12 Minimum Spanning Tree  Spring 2015
 

weight edge to connect all vertices, we return our MST 

Correctness 

We prove the correctness of Prim’s Algorithm with the following invariants. 

1. v /∈ S =⇒ v.key = min{w(u, v) | u ∈ S} 

2. Tree TS within S ⊆ MST of G. 

The first invariant is follows from Step 8 of the algorithm above. A proof of the 
second invariant follows: 

Proof. Assume by induction that TS ⊆ MST T ∗. Then  S → S ' ∪ {e}, where  e is a 
least-weight edge crossing the cut (S, V \ S). Then we can greedily cut and paste 
e, which implies that we can modify T ∗ to include e without removing TS , since the 

' ⊆ T ∗edges of TS do not cross the cut. Therefore TS ∪ {e} = TS . 

Thus Prim’s Algorithm always adds edges that have the lowest weight and gradu
ally builds a tree that is always a subset of some MST, and returns a correct answer. 

Runtime 

Prim’s algorithm runs in 

O(V ) · TExtract-Min + O(E) · TDecrease-Key 

The O(E) term results from the fact that Step 8 is repeated a number of times equal 
to the sum of the number of adjacent vertices in the graph, which is equal to 2|E|, 
by the handshaking lemma. 

Then the effective runtime of the algorithm varies with the data structures used 
to implement the algorithm. The table below describes the runtime with the different 
implementations of the priority queue. 

Priority Queue
 
Array 
Binary heap 
Fibonacci heap 
[CLRS ch. 19] 

TExtract-Min TDecrease-Key Total 
O(V ) O(1) O(V 2) 
O(lg V ) O(lg V ) O(E lg V ) 
O(lg V ) (amortized) O(1) (amortized) O(E + V lg V ) 

4
 

6.046J



Lecture 12 Minimum Spanning Tree  Spring 2015
 

Kruskal’s Algorithm 

Kruskal’s Algorithm is another algorithm to solve the MST problem. It constructs 
an MST by taking the globally lowest-weight edge and contracting it. 

Kruskal’s Algorithm Pseudocode 

1 Maintain connected components that have been added to the 
MST so far T , in a Union-Find structure 

2 Initialize T = ∅ 
3 for v in V 
4  Make-Set(v) 
5 Sort  E by weight 
6 For  e = (u, v) ∈ E (in increasing-weight order): 
7 if Find-Set(u)  = Find-Set(v): 
8  Add  e to T 
9 Union(u, v) 

Correctness 

We use the following invariant to prove the correctness of Kruskal’s Algorithm. 

Claim 3. The tree-so-far T ⊆ MST T ∗ . 

Proof. We give an induction proof. We begin by assuming that the tree-so-far T ⊆ T ∗ , 
via the inductive hypothesis. When we add an edge e between some components C1 

and C2, we use the greedy-choice property on the cut (C1, V  \ C2). Thus we have 
added the edge without removing T , and our new tree-so-far remains a subset of the 
MST T ∗ . 

Runtime 

Kruskal’s algorithm has an overall runtime of 

Tsort(E) +  O(V ) · TMake-Set + O(E)(TFind + TUnion) =  O(E lg E + Eα(V )) 

We note that TMake-Set is O(1) and Tfind + TUnion is amortized O(α(V )) for Union-Find 
data structures. 

Furthermore, if all weights are integer weights, or all weights are in the range 
[0, EO(1)], then the runtime of the sorting step is O(E), using Counting Sort or a 
similar algorithm, and the runtime of Kruskal’s Algorithm will be better than that 
of Prim’s Algorithm. 

5
 

6.046J



Lecture 12 Minimum Spanning Tree  Spring 2015
 

Other MST Algorithms 

Currently, the fastest MST algorithm is a randomized algorithm with an expected 
runtime of O(V + E). The algorithm was proposed by Karger, Klein, and Tarjan in 
1993. 

6
 

6.046J



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



