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Problem Set 6


MIT students: This problem set is due in lecture on Monday, November 7, 2005. The homework 
lab for this problem set will be held 2–4 P.M. on Sunday, November 6, 2005. 

Reading: Chapter 17 and the handout on competitive analysis. 
Both exercises and problems should be solved, but only the problems should be turned in. 

Exercises are intended to help you master the course material. Even though you should not turn in 
the exercise solutions, you are responsible for material covered in the exercises. 

Mark the top of each sheet with your name, the course number, the problem number, your 
recitation section, the date and the names of any students with whom you collaborated. Please 
staple and turn in your solutions on 3-hole punched paper. 

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up 
should take the form of a short essay. A topic paragraph should summarize the problem you are 
solving and what your results are. The body of the essay should provide the following: 

1. A description of the algorithm in English and, if helpful, pseudo-code. 

2. At least one worked example or diagram to show more precisely how your algorithm works. 

3. A proof (or indication) of the correctness of the algorithm. 

4. An analysis of the running time of the algorithm. 

Remember, your goal is to communicate. Full credit will be given only to correct solutions 
which are described clearly. Convoluted and obtuse descriptions will receive low marks. 

Exercise 6-1. Do Exercise 17.1-1 on page 410 in CLRS. 

Exercise 6-2. Do Exercise 17.3-3 on page 416 in CLRS. 

Exercise 6-3. Do Exercise 17.3-6 on page 416 in CLRS. 

Exercise 6-4. Do Exercise 17.3-7 on page 416 in CLRS. 

Exercise 6-5. Do Exercise 17.4-2 on page 425 in CLRS. 
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Problem 6-1. Electronic Billboard 

You are starting a new Electronic Billboard company called E-Bill. For now, you have just one 
billboard and you can display one advertisement on the billboard at a time. Your advertising 
contract with the customers says that if you display their advertisement for one week, then they 
will pay you, otherwise they won’t. Customers come to you with their advertisements at arbitrary 
times and offer you some money to display their ad. When they come to you, you must decide 
immediately whether you will display their advertisement starting immediately. If you are already 
displaying some other advertisement, you may drop it and lose all the profit due to the dropped ad. 
The goal is to device an algorithm to maximize your profit. 

p

Formally, an advertisement i arrives at time ai and has a profit of pi. Upon arrival of an ad, the 
algorithm must decide immediately whether to display it or not. The algorithm receives the profit 

i of ad i arriving at time ai only if it displays the ad from time ai up to ai + 1. Assume that 
only one job arrives at a time. Assume also that if ad i completes at time t, the billboard can start 
displaying another ad immediately. 

Consider the following algorithm AD-SCHEDULE, where α > 1 is some constant. When an ad i 
with profit pi arrives, 

1. if no ad is being displayed, then start displaying i, 

2.	 if an ad k of profit pk is being displayed, then discard k if and only if pi > αpk, otherwise 
don’t accept i. 

The ads that an algorithm displays for a full week are completed ads, and the ads that the algorithm 
starts displaying, but does not display for a full week are discarded ads. The ads that the algorithm 
does not accept at all are rejected ads. The algorithm earns profit from only the completed ads. 

(a)	 Consider the arrival sequence shown in Figure 1. Give the execution trace of algorithm

AD-SCHEDULE with α = 1.5, that is, show what actions occur when each ad arrives

and which ads are completed, discarded, and rejected. Compute the total profit earned

by AD-SCHEDULE. 

Ad 
1 
2 
3 
4 
5 
6 
7 
8 

Arrival Time 
1.0 
1.7 
1.8 
2.0 
2.1 
2.5 
3.0 
4.1 

Profit 
1.0 
1.3 
1.8 
3.0 
2.3 
4.0 
4.5 
6.2 

Figure 1: A sample input to AD-SCHEDULE. 
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(b)	 Let OPT be the algorithm that knows the sequence of ads in advance and schedules the

ads so as to maximize the profit. Which of the ads in Figure 1 are completed, rejected,

and discarded by OPT? What is the profit of OPT?


(c)	 Show that if α = 1, then AD-SCHEDULE can produce arbitrarily poor profits com
pared with OPT. (Hint: Give a sequence of ads on which OPT does well and AD-SCHEDULE 

does poorly.) 

Consider a set of ads A = {1, 2, . . . , n}. A subset S ⊆ A is a solution to the billboard-scheduling 
problem if and only if some algorithm can complete all ads in S. That is, no two ads in the solution 
X overlap. The profit PS of a solution S is PS = i∈X pi. 

For a sequence A of ads, suppose that AD-SCHEDULE generates a solution S ⊆ A and OPT 
∗generates the solution S ⊆ A. For any time t, let St ⊆ S be the set of ads that AD-SCHEDULE 

completes by (up to and including) time t and Dt ⊆ A − S be the set of ads that AD-SCHEDULE 
∗discards by time t. Similarly, let S ⊆ S∗ be the set of ads that OPT completes by time t.t 

(d)	 Suppose that j is the ad that AD-SCHEDULE is displaying at time t. Prove by induction

that


(α − 1) pi ≤ pj + pi . 
i∈Dt i∈St 

(e)	 Prove that OPT never needs to discard an ad after it starts displaying it. In other words, 
∗if an optimal algorithm OPT generates a solution S where the algorithm sometimes 

discards ads, then there is another algorithm OPT* that never discards an ad and gen
∗erates the same solution S . 

∗	 ∗(f)	 Show that there exists an injective mapping f : S → D∞ ∪S such that for all j ∈ S ,

we have αpf(j) ≥ pj and aj − 1 < af(j) ≤ aj. (Remember to show that the mapping

is injective.)


∗(g)	 Let j and j be the ads that OPT* and AD-SCHEDULE are displaying at time t. Prove

that, for all t, we have


⎛	 ⎞ 

pj∗ + pi ≤ α ⎝pj + pi + pi
⎠ . 

i∈S∗ i∈Dt i∈Stt 

(h)	 Consider the potential function 
⎛ ⎞ ⎛ ⎞ 

Φ(t) = α2 
⎝

� 

pi + pj
⎠ − (α − 1) ⎝ pi + pj∗ 

⎠ , 
i∈St	 i∈S

t 

∗ 

∗where AD-SCHEDULE and OPT* are displaying ads j and j respectively at time t. 
Using parts (d) and (g), prove that this potential function always stays positive. Alter
natively, you may prove this part using induction directly, if you wish. 

(i)	 Conclude that AD-SCHEDULE is α2/(α − 1)-competitive. 
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(j)	 What is the optimal value of α to minimize the competitive ratio? 

(k)	 Optional: Give an example of a sequence of ads where, if AD-SCHEDULE’s profit is

P , then OPT’s profit is at least ((α2/(α − 1)) − 1)P .


(l)	 Optional: Consider a variation of the billboard-scheduling problem in which ad lengths

may vary and profit is proportional to ad length. That is, each ad i has a profit pi and

must be displayed for time pi. Give a competitive analysis of AD-SCHEDULE for this

variation of the problem.


Problem 6-2. The cost of restructuring red-black trees. 

There are four basic operations on red-black trees that modify their structure: node insertions, node 
deletions, rotations, and color modifications. We have seen that RB-INSERT and RB-DELETE use 
only O(1) rotations, node insertions, and node deletions to maintain the red-black properties, but 
they may make many more color modifications. 

(a)	 Describe how to construct a red-black tree on n nodes such that RB-INSERT causes

Ω(lg n) color modifications. Do the same for RB-DELETE.


Although the worst-case number of color modifications per operation can be logarithmic, we shall 
prove the following theorem. 

Theorem 1 Any sequence of m RB-INSERT and RB-DELETE operations on an initially empty 
red-black tree causes O(m) structural modifications in the worst case. 

(b)	 Examine Figures 13.4, 13.5, and 13.6 in CLRS closely. Some of the cases handled

by the main loop of the code of both RB-INSERT-FIXUP and RB-DELETE-FIXUP


are terminating: once encountered, they cause the loop to terminate after a fixed,

constant number of operations. For each of the cases of RB-INSERT-FIXUP and

RB-DELETE-FIXUP, specify which are terminating and which are not.


We shall first analyze the structural modifications when only insertions are performed. Let T be a 
red-black tree, and let Φ(T ) be the number of red nodes in T . Assume that 1 unit of potential can 
pay for the structural modifications performed by any of the three cases of RB-INSERT-FIXUP. 

(c)	 Let T � be the result of applying Case 1 of RB-INSERT-FIXUP to T . Argue that

Φ(T �) = Φ(T ) − 1.


(d)	 Node insertion into a red-black tree using RB-INSERT can be broken down into

three parts. List the structural modifications and potential changes resulting from

TREE-INSERT, from nonterminating cases of RB-INSERT-FIXUP, and from terminat

ing cases of RB-INSERT-FIXUP.


(e)	 Using part (d), argue that the amortized number of structural modifications (with re

spect to Φ) of RB-INSERT is O(1).




� 
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We now wish to prove the theorem for both insertions and deletions. Define 

⎧ 

⎪ 
0 if v is red, 

⎪ 

⎪ 

⎨ 1 if v is black and has no red children, 
w(v) = 

⎪ 0 if v is black and has one red child, 
⎪ 

⎪ 

⎩ 

2 if v is black and has two red children. 

Let the potential of a red-black tree T be defined as 

Φ(T ) = w(v) , 
v∈T 

and let T � be the tree that results from applying any nonterminating case of RB-INSERT-FIXUP or 
RB-DELETE-FIXUP to T . 

(f)	 Show that Φ(T �) ≤ Φ(T ) − 1 for all nonterminating cases of RB-INSERT-FIXUP.

Argue that the amortized number of structural modifications (with respect to Φ) per

formed by RB-INSERT-FIXUP is O(1).


(g)	 Show that Φ(T �) ≤ Φ(T ) − 1 for all nonterminating cases of RB-DELETE-FIXUP.

Argue that the amortized number of structural modifications (with respect to Φ) per

formed by RB-DELETE-FIXUP is O(1).


(h)	 Complete the proof of Theorem 1. 


