6.047/6.878 Computational Biology: Genomes, Networks, Evolution

Lecture 10 Regulatory motif discovery and target identification

Module III: Epigenomics and gene regulation

- Computational Foundations
 - L10: Gibbs Sampling: between EM and Viterbi training
 - L11: Rapid linear-time sub-string matching
 - L11: Multivariate HMMs
 - L12: Post-transcriptional regulation
- Biological frontiers:
 - L10: Regulatory motif discovery, TF binding
 - L11: Epigenomics, chromatin states, differentiation
 - L12: Post-transcriptional regulation

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ij} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

Regulatory motif discovery

- Regulatory motifs
 - Genes are turned on / off in response to changing environments
 - No direct addressing: subroutines (genes) contain sequence tags (motifs)
 - Specialized proteins (transcription factors) recognize these tags
- What makes motif discovery hard?
 - Motifs are short (6-8 bp), sometimes degenerate
 - Can contain any set of nucleotides (no ATG or other rules)
 - Act at variable distances upstream (or downstream) of target gene

The regulatory code: All about regulatory motifs

- The parts list: ~20-30k genes
 - Protein-coding genes, RNA genes (tRNA, microRNA, snRNA)
- The circuitry: constructs controlling gene usage
 - Enhancers, promoters, splicing, post-transcriptional motifs
- The regulatory code, complications:
 - Combinatorial coding of 'unique tags'
 - Data-centric encoding of addresses
 - Overlaid with 'memory' marks
 - Large-scale on/off states
 - Modulation of the large-scale coding
 - Post-transcriptional and post-translational information
- Today: discovering motifs in co-regulated promoters and *de novo* motif discovery & target identification

TFs use DNA-binding domains to recognize specific DNA sequences in the genome

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Berger, Michael F. et al. "Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences." Cell 133, no. 7 (2008): 1266-1276.

Disrupted motif at the heart of FTO obesity locus

Restoring motif restores thermogenesis

Courtesy of Manolis Kellis. Used with permission.

Regulator structure \Leftrightarrow recognized motifs

Proteins 'feel' DNA

- Read chemical properties of bases
- Do NOT open DNA (no base complementarity)
- 3D Topology dictates specificity
 - Fully constrained positions:
 → every atom matters
 - "Ambiguous / degenerate" positions
 → loosely contacted
- Other types of recognition
 - MicroRNAs: complementarity
 - Nucleosomes: GC content
 - RNAs: structure/seqn combination

© Garland Publishing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Motifs summarize TF sequence specificity

Target genes bound by ABF1 regulator		Coordinates		Genome sequence at bound site			
ACS1	acetyl CoA synthetase	-491	-479	ATCATTCTGGACG			
ACS1	acetyl CoA synthetase	-433	-421	ATCATCTCGGACG			
ACS1	acetyl CoA synthetase	-311	-299	ATCATTTGCCACG			
CHA1	catabolic L-serine dehydratase	-280	-254	A ATCACCGCGAACG GA			
ENO2	Enolase	-470	-461	ggcgttat GTCACTAACGACG tgcacca			
HMR	silencer	-256	-283	ATCAATAC ATCATAAAATACG AACGATC			
LPD1	lipoamide dehydrogenase	-288	-300	gat ATCAAAATTAACG tag			
LPD1	lipoamide dehydrogenase	-301	-313	gat ATCACCGTTGACG tca			
PGK	phosphoglycerate kinase	-523	-496	CAAACAA ATCACGAGCGACG GTAATTTC			
RPC160	RNA pol III/C 160 kDa subunit	-385	-349	ATCACTATATACG TGAA			
RPC40	RNA pol III/C 40 kDa subunit	-137	-116	GTCACTATAAACG			
rpL2	ribosomal protein L2	-185	-167	TAAT aTCAcgtcACACG AC			
SPR3	CDC3/10/11/12 family homolog	-315	-303	ATCACTAAATACG			
YPT1	TUB2	-193	-172	CCTAG GTCACTGTACACG TATA			

Positi	ion	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Position	А	56	4	4	81	4	23	15	27	31	31	89	23	4	58
VVeight Matrix	G	32	4	4	12	4	31	23	4	19	23	4	4	89	35
(PWM)	с	4	4	89	4	58	12	23	19	19	23	4	69	4	4
	Т	4	89	4	4	35	35	39	50	31	23	4	4	4	4
Motif Logo		AG		C	A	Ç			Ţ			A	Č	G	AG
Consens	us	R	т	с	Α	Y	N	N	н	N	N	Α	с	G	R

- Summarize information
- Integrate many positions
- Measure of information

•

- Distinguish motif vs. motif instance
- Assumptions:
 - Independence
 - Fixed spacing

Experimental factor-centric discovery of motifs

Courtesy of the authors. Used with permission. Source: Ray, Partha, and Rebekah R. White. "Aptamers For targeted drug delivery." Pharmaceuticals 3, no. 6 (2010): 1761-1778.

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http:// ocw.mit.edu/help/faq-fair-use/.

Source: Liu, Xiao et al. "DIP-chip: rapid and accurate determination of DNA-binding specificity." Genome Research 15, no. 3 (2005): 421-427.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/ help/faq-fair-use/.

SELEX (Systematic Evolution of Ligands by Exponential Enrichment; Klug & Famulok, 1994) DIP-Chip (DNAimmunoprecipitatio n with microarray detection; Liu et al., 2005) PBMs (Protein binding microarrays; Mukherjee, 2004) Double stranded DNA arrays

Approaches to regulatory motif discovery

- Expectation Maximization (e.g. MEME)
 Iteratively refine positions / motif profile
- Regionbased motif
- discovery

- Genome- _{ wide
- In vitro / trans

- Gibbs Sampling (e.g. AlignACE) – Iteratively sample positions / motif profile
- Enumeration with wildcards (e.g. Weeder)
 Allows global enrichment/background score
- Peak-height correlation (e.g. MatrixREDUCE)
 - Alternative to cutoff-based approach
 - Conservation-based discovery (e.g. MCS) – Genome-wide score, up-/down-stream bias
- Protein Domains (e.g. PBMs, SELEX)
 In vitro motif identification, seq-/array-based

Motifs are not limited to DNA sequences

- Splicing Signals at the RNA level
 - Splice junctions
 - Exonic Splicing Enhancers (ESE)
 - Exonic Splicing Surpressors (ESS)
- Domains and epitopes at the Protein level
 - Glycosylation sites
 - Kinase targets
 - Targetting signals
 - MHC binding specificities
- Recurring patterns at the physiological level
 - Expression patterns during the cell cycle
 - Heart beat patterns predicting cardiac arrest
 - Final project in previous year, now used in Boston hospitals!
 - Any probabilistic recurring pattern

Challenges in regulatory genomics

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ii}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

Enrichment-based discovery methods

Given a set of co-regulated/functionally related genes, find common motifs in their promoter regions

- Align the promoters to each other using local alignment
- Use expert knowledge for what motifs should look like
- Find 'median' string by enumeration (motif/sample driven)
- Start with conserved blocks in the upstream regions

Starting positions \Leftrightarrow Motif matrix

• given <u>aligned</u> sequences \rightarrow easy to compute profile matrix

given profile matrix

4

easy to find starting position probabilities

Key idea: Iterative procedure for estimating both, given uncertainty

(learning problem with hidden variables: the starting positions)

Basic Iterative Approach

Given: length parameter *W*, training set of sequences set initial values for **motif**

do

re-estimate starting-positions from motif
 re-estimate motif from starting-positions
 until convergence (change < ε)
 return: motif, starting-positions

Representing Motif M(k,c) and Background B(c)

- Assume motif has fixed width, W
- Motif represented by matrix of probabilities: *M(k,c)* the probability of character *c* in column *k*

$$M = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.1 & 0.5 & 0.2 \\ C & 0.4 & 0.2 & 0.1 \\ G & 0.3 & 0.1 & 0.6 \\ T & 0.2 & 0.2 & 0.1 \end{bmatrix} (\text{-CAG})$$

 Background represented by B(c), frequency of each base

$$B = \begin{bmatrix} A & 0.26 \\ C & 0.24 \\ G & 0.23 \\ T & 0.27 \end{bmatrix}$$
 (near uniform)
(see also: di-nucleotide etc

Representing the starting position probabilities (Z_{ij})

• the element Z_{ij} of the matrix Z represents the probability that the motif starts in position *j* in sequence *i*

Some examples:

Starting positions (Z_{ij}) \Leftrightarrow Motif matrix M(k,c)

- Z_{ii}: Probability that on sequence i, motif start at position j
- M(k,c): Probability that kth character of motif is letter c
- Computing Z_{ii} matrix from M(k,c) is straightforward
 - At each position, evaluate start probability by multiplying across the matrix
- Three variations for re-computing motif M(k,c) from Z_{ij} matrix
 - Expectation maximization
 - Gibbs sampling
 - Greedy approach

- → All starts weighted by Z_{ij} prob distribution
- ➔ Single start for each seq X_i by sampling Z_{ij}
- \rightarrow Best start for each seq X_i by maximum Z_{ij}

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ii}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

E-step: Estimate Z_{ii} positions from matrix

Three examples for Greedy, Gibbs Sampling, EM

Calculating $P(X_i)$ when motif position is known

Probability of training sequence X_i, given hypothesized start position j

$$\Pr(X_i \mid Z_{ij} = 1, M, B) = \prod_{k=1}^{j-1} B(X_{i,k}) \underbrace{\prod_{k=j}^{j+W-1} M(k-j+1, X_{i,k})}_{\text{before motif}} \underbrace{\prod_{k=j+W}^{L} B(X_{i,k})}_{\text{motif}} after motif$$

Example:

$$X_{i} = G C T G T A G B = \begin{bmatrix} A & 0.25 \\ C & 0.25 \\ G & 0.25 \\ T & 0.25 \end{bmatrix} M = \begin{bmatrix} A & 0.1 & 0.5 & 0.2 \\ C & 0.4 & 0.2 & 0.1 \\ G & 0.3 & 0.1 \\ 0.2 & 0.2 \end{bmatrix} \begin{bmatrix} 0.3 & 0.1 \\ 0.1 \\ 0.1 \end{bmatrix} \begin{bmatrix} 0.6 \\ 0.1 \end{bmatrix}$$

$$Pr(X_{i} | Z_{i3} = 1, M, B) = B(G) \times B(C) \times M(1, T) \times M(2, G) \times M(3, T) \times B(A) \times B(G) = 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25$$

Calculating the Z vector (using M)

- To estimate the starting positions in Z at step t likelihood prior $Z_{ij}^{(t)} = \Pr(Z_{ij} = 1 | X_i, M^{(t)}) = \frac{\Pr(X_i | Z_{ij} = 1, M^{(t)}) \Pr(Z_{ij} = 1)}{\Pr(X_i)}$ posterior $\Pr(X_i)$ evidence
 (Bayes' rule)
 - At iteration t, calculate $Z_{ij}^{(t)}$ based on $M^{(t)}$
 - We just saw how to calculate $Pr(X_i | Z_{ij}=1, M^{(t)})$
 - To obtain total probability $Pr(X_i)$, sum over all starting positions

$$Z_{ij}^{(t)} = \frac{\Pr(X_i \mid Z_{ij} = 1, M^{(t)}) \Pr(Z_{ij} = 1)}{\sum_{k=1}^{L-W+1} \Pr(X_i \mid Z_{ik} = 1, M^{(t)}) \Pr(Z_{ik} = 1)}$$

- Assume uniform priors (motif eq likely to start at any position)

Calculating the Z vector: Example

$$X_{i} = \mathbf{G} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

$$p = \begin{bmatrix} \mathbf{0} & \mathbf{1} & 2 & 3 \\ \mathbf{A} & 0.25 & 0.1 & 0.5 & 0.2 \\ \mathbf{C} & 0.25 & 0.4 & 0.2 & 0.1 \\ \mathbf{G} & 0.25 & 0.3 & 0.1 & 0.6 \\ \mathbf{T} & 0.25 & 0.2 & 0.2 & 0.1 \end{bmatrix}$$

$$Z_{i1} = \begin{bmatrix} 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \\ \mathbf{Z}_{i2} = 0.25 \times \underbrace{0.4 \times 0.2 \times 0.6}_{\mathbf{G}} \times 0.25 \times 0.2$$

then normalize so that

 $\sum_{j=1}^{L-W+1} Z_{ij} = 1$

Aside: Simplifying P(X_i)

• Probability of training sequence X_i, given hypothesized start position j

$$Pr(X_{i} | Z_{ij} = 1, M, B) = \prod_{k=1}^{j-1} B(X_{i,k}) \prod_{k=j}^{j+W-1} M(k-j+1, X_{i,k}) \prod_{k=j+W}^{L} B(X_{i,k})$$

before motif motif after motif
$$= \prod_{k=j}^{j+W-1} \frac{M(k-j+1, X_{i,k})}{B(X_{i,k})} \prod_{k=1}^{L} B(X_{i,k})$$

can be stored in a matrix constant for each sequence

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

M-step: Max-likelih motif from Z_{ii} positions

The M-step: Estimating the motif M

• recall M(k,c) represents the probability of character c in position k; B(c) stores values for the background

$$M^{(t+1)}(k,c) = \frac{n_{k,c} + d}{\sum_{c} (n_{k,c} + d)} \qquad \text{pseudo-counts}$$

where $n_{c,k} = \sum_{i} \sum_{j \mid X_{i,j+k-1} = c} Z_{ij}$

$$B^{(t+1)}(c) = \frac{n_{0,c} + d}{\sum_{c} (n_{0,c} + d)} \quad \text{where} \quad n_{0,c} = n_c - \sum_{j=1}^{W} n_{j,c}$$

M-step example: Estimating M(k,c) from Z_{ij}

•

$$X_1 = A \quad C \quad A \quad G \quad C \quad A$$

 $Z_1 = 0.1 \quad 0.7 \quad 0.1 \quad 0.1$

$$X_2 = A G G C A G$$

 $Z_2 = 0.4 0.1 0.1 0.4$

$$X_3 = T C A G T C$$

 $Z_3 = 0.2 0.6 0.1 0.1$

$$M(1,A) = \frac{Z_{1,1} + Z_{1,3} + Z_{2,1} + Z_{3,3} + 1}{Z_{1,1} + Z_{1,2} \dots + Z_{3,3} + Z_{3,4} + 4}$$

Em approach:Avg'em allGibbs sampling:Sample oneGreedy:Select max

EM: sum over full probability

$$- n_{1,A} = 0.1 + 0.1 + 0.4 + 0.1 = 0.7$$

$$- n_{1,C} = 0.7 + 0.4 + 0.6 = 1.7$$

$$- n_{1,G} = 0.1 + 0.1 + 0.1 + 0.1 = 0.4$$

$$- n_{1,T} = 0.2 = 0.2$$

M(k,c) =

Normalize and add pseudo-counts

$$- M(1,A) = (0.7+1)/(T+4) = 1.7/7=0.24$$

$$- M(1,C) = (1.7+1)/(T+4) = 2.7/7=0.39$$

$$- M(1,G) = (0.4+1)/(T+4) = 1.4/7=0.2$$

$$- M(1,T) = (0.2+1)/(T+4) = 1.2/7=0.17$$

	1	2	3
A	0.24	0.39	0.21
С	0.39	0.21	0.18
G	0.2	0.24	0.44
Т	0.17	0.16	0.16

31

The EM Algorithm

• EM converges to a local maximum in the likelihood of the data given the model:

$$\prod_{i} \Pr(X_i \mid M, B)$$

- Deterministic iterations max direction of ascent
- Usually converges in a small number of iterations
- Sensitive to initial starting point (i.e. values in *M*)

P(Seq|Model) Landscape

EM searches for parameters to increase P(seqs|parameters)

Useful to think of P(seqs|parameters) as a function of parameters P(Sequences|params1,params2) 0.8 EM starts at an initial set of 0.6 parameters 0.4 And then "climbs uphill" until it 0.2 reaches a local maximum 25 25 20 Parameter1 15 Parameter2 Û. 0

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Where EM starts can make a big difference

One solution: Search from Many Different Starts

To minimize the effects of local maxima, you should search multiple times from different starting points

MEME uses this idea Start at many points Run for one iteration Choose starting point that got the "highest" and continue

Parameter1

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

15

Parameter2

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

Three options for assigning points, and their parallels across K-means, HMMs, Motifs

e rule	Update assignments	Algoritl in eac	Update model			
Update	Estimate hidden labels	Expression clustering	HMM learning	Motif discovery	(M step) → max	
The hidden label is:		Cluster labels	State path π	Motif positions	likelillood	
Pick a best	Assign each point to best label	K-means: Assign each point to nearest cluster	Viterbi training: label sequence with best path	Greedy: Find best motif match in each sequence	Average of those points assigned to label	
Average all	Assign each point to all labels, probabilistically	Fuzzy K- means: Assign to all clusters, weighted by proximity	Baum-Welch training: label sequence w all paths (posterior decoding)	MEME: Use all positions as a motif occurrence weighed by motif match score	Average of all points, weighted by membership	
Sample one	Pick one label at random, based on their relative probability	N/A: Assign to a random cluster, sample by proximity	N/A: Sample a single label for each position, according to posterior prob.	Gibbs sampling: Use one position for the motif, by sampling from the match scores	Average of those points assigned to label(a sample)	
Three examples of Greedy, Gibbs Sampling, EM

EM averages over the entire sequence (no preference)

Gibbs Sampling

- A general procedure for sampling from the joint distribution of a set of random variables $\Pr(U_1...U_n)$ by iteratively sampling from for each $j \ \Pr(U_j | U_1...U_{j-1}, U_{j+1}...U_n)$
- Useful when it's hard to explicitly express means, stdevs, covariances across the multiple dimensions
- Useful for supervised, unsupervised, semi-supervised learning
 - Specify variables that are known, sample over all other variables
- Approximate:
 - Joint distribution: the samples drawn
 - Marginal distributions: examine samples for subset of variables
 - Expected value: average over samples
- Example of Markov-Chain Monte Carlo (MCMC)
 - The sample approximates an unknown distribution
 - Stationary distribution of sample (only start counting after burn-in)
 - Assume independence of samples (only consider every 100)
- Special case of Metropolis-Hastings
 - In its basic implementation of sampling step
 - But it's a more general sampling framework

Gibbs Sampling for motif discovery

- First application to motif finding: Lawrence et al 1993
 - Can view as a stochastic analog of EM for motif discovery task
 - Less susceptible to local minima than EM
- EM maintains distribution Z_i over the starting points for each seq
- Gibbs sampling selects specific starting point **a**_i for each seq
 - ➔ but keeps resampling these starting points

given: length parameter *W*, training set of sequences choose random positions for *a*

do

pick a sequence X_i

estimate **p** given current motif positions a (update step)

(using all sequences but X_i)

sample a new motif position a_i for X_i (sampling step)

until convergence

return: p, a

Popular implementation: AlignACE, BioProspector

AlignACE: first statistical motif finder BioProspector: improved version of AlignACE

Both use basic Gibbs Sampling algorithm:

- 1. <u>Initialization</u>:
 - a. Select random locations in sequences $X_1, ..., X_N$
 - b. Compute an initial model M from these locations
- 2. <u>Sampling Iterations</u>:
 - a. Remove one sequence X_i
 - b. Recalculate model
 - c. Pick a new location of motif in X_i according to probability the location is a motif occurrence

In practice, run algorithm from multiple random initializations:

- 1. Initialize
- 2. Run until convergence
- 3. Repeat 1,2 several times, report common motifs

Gibbs Sampling (AlignACE)

- Given:
 - X₁, ..., X_N,
 - motif length W,
 - background B,

$$\sum_{i=1}^{N} \sum_{k=1}^{W} \log \frac{M(k, X_{i, a_i + k})}{B(X_{i, a_i + k})}$$

- Find:
 - Model M
 - Locations a_1, \dots, a_N in X_1, \dots, X_N

Maximizing log-odds likelihood ratio This is the same as the EM objective (notice log and notation change)

Gibbs Sampling (AlignACE)

Predictive Update:

٠

٠

$$M(k,c) = \frac{d + \sum_{s \neq i} (X_{s,a_s+k} = c)}{(N-1) + 4d}$$

where d is a pseudocount to avoid 0s

Sampling New Motif Positions

• for each possible starting position, $a_i = j$, compute a weight

$$A_{j} = \prod_{k=j}^{j+W-1} \frac{M(k-j+1, X_{i,k})}{B(X_{i,k})}$$

- randomly select a new starting position *a_i* according to these weights (normalizing across the sequence, again like with MEME)
- Note, this is equivalent to using the likelihood from MEME because:

$$A_j \propto \Pr(X_i \mid Z_{ij} = 1, p)$$

Advantages / Disadvantages

• Very similar to EM

Advantages:

- Easier to implement
- Less dependent on initial parameters
- More versatile, easier to enhance with heuristics

Disadvantages:

- More dependent on all sequences to exhibit the motif
- Less systematic search of initial parameter space

Gibbs Sampling and Climbing

Because gibbs sampling does always choose the best new location it can move to another place not directly uphill

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

In theory, Gibbs Sampling less likely to get stuck a local maxima

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

Motivation for de novo genome-wide motif discovery

- Both TF and region centric approaches are not comprehensive and are biased
- TF centric approaches generally require transcription factor (or antibody to factor)
 - Lots of time and money
 - Also have computational challenges
- *De novo* discovery using conservation is unbiased but can't match motif to factor and require multiple genomes

Evolutionary signatures for regulatory motifs

Known engrailed binding site

- Start by looking at known motif instances
- Individual motif instances are preferentially conserved
- Can we just take conservation islands and call them motifs?
 - No. Many conservation islands are due to chance or perhaps due to non-motif conservation

Kellis *el al,* Nature 2003 Xie *et al.* Nature 2005 Stark *et al,* Nature 2007 48

Conservation islands overlap known motifs

~	TBP	
Scer Spar Smik Sbay	TATCCATATCTTAATCTTAATCTTATATGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAAACTTTCAGTAATACG TATCCATATCTAAGTCTTACTTATATGTTGT-GGAAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCCTT-TCTATGAAACTTGAACTG-TACG TACCGATGTCTAGTCTTACTTATATGTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGCTCTTTCTATGGAGCTTTG-CTA-TATG TAGATATTTCTGATCTTTCTTATATGTTATATGAGAGAGA	
Scer Spar Smik Sbay	CTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCCAGCGGCGCACGCCGACGCGACGGCACAGCCCTCCCAGGGAAGACTCTCCCTCC	
	GAL4	
Scer Spar Smik Sbay	TCACCGG-TCGCGTTCCTGAAACGCAGATGTGC TCGCGCCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAA TCGTCGGGTTGTGTCCCTTAA-CATCGATGTAC CTCGCGCCGCCCTGCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTATGGTTATGAC ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGC CTCGCACCACCGTGGTCCGAACAATAAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC GTG-CGGATCACGTCCCTGAA-CATAGGTACGC CTCGCACCACCGTGGTCCGAACAATAAATACTGGCATAAAGAGGTACTAATTTCTACGGTGATGCC GTG-CGGATCACGTCCCTGAT-TACTGAAGCGT CTCGCCCCGCCATACCCCCGAACAATGCAAGAACAAA-TGCCTGTAGTGGCAGTTATGGT ** * * ** ** ** * * * * * * * * * * *	
	MIG1	
Scer Spar Smik Sbay	GAGGA-AAAATTGGCAGTAACCTGGCCCCACAAACCTT-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGATTAGT AGGAACAAAATAAGCAGCCCACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAGTTAGG CAACGCAAAATAAACAGTCCCCCGCCCCCACATACCTT-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAGA-AATATTAGG GAACGTGAAATGAACAGTCCCCCGCCCCCAATATACTTTGTTCCGTGTACAGCCAACGGATGAGACAATGATGGGGTTGCGGTCAAGCCTACGA CAACGCAAAATAAACAGTCCCCCGCCCCCAATATACTTTGTTCGTTCCGTGTACAGCCTAAGACTAGGCATAGGGGTTGCGGTCAAGCCAACGC GAACGTGAAATGACAATTCCTTGCCCCCT-CCCCAATATACTTTGTTCGTGCGGTCAAGCCAACGCGACAAGATGGGGTTGCGGGTCAAGCCTACCG ****	
	MIG1 TBP	
Scer Spar Smik Sbay	TTTTTAGCOTTATTTCTGGGG TAATTAATCAGCGAAGCGATGATTTTT-GATCTATTAACAGATA TATAAATGGAAAAGCTGCATAACCACTT GTTTTTCTTATTCCTGAG2 CAATTCATCCGCGAAAAAATAATGGTTTTT-GGTCTATTAGCAAACA TATAAATGCAAAAGTTGCATAGCCACTT TTCTCACTTTCTCTGTG2 TAATTCATCACCGAAATGATGGTTTAGGACTATTAGCAAACA TATAAATGCAAAAGTCGCAGAGATCAAT TTTTCCGTT TTACTCTGTAG TGGCTCATGCAGAAGTAATGGTTTTCTGTTCCTTTTGCAAACA TATAAATGCAAAAGTCGCAGAGATCAAT TTTTCCGTT TTACTCTGTAG TGGCTCATGCAGAAGTATGGTTTTCTGTTCCTTTTGCAAACA TATAAATGCAAAAGTCGCAGAGATCAAT	
Scer Spar Smik Sbay	TAACTAATACTTTCCAACATTTTCAGTTTGTATTACTT-CTTATTCAAATGTCATAAAAGTATCAACA-AAAAATTGTTAATATAC TAAATAC-ATTTGCTCCTCCAAGATTTTTAATTTCGT-TTTGTTTTATTGTCATGGAAATATTAACA-ACAAGTAGTTAATATAC TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTAATATAC TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGGTTTTACTTTGTCTCCCAATTATCAAAACATCAATAACAAGTATTC * * * * * * * * * * * * * * * * * * *	>
	GAL4 Transcription factor binding Conservation island	

Increase power by testing conservation in many regions

Genome-wide conservation

Evaluate conservation within:	Gal4	Controls
(1) All intergenic regions	13%	2%
(2) Intergenic : coding	13%:3%	2%:7%
(3) Upstream : downstream	12:0	1:1

A signature for regulatory motifs

Test 1: Intergenic conservation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Test 2: Intergenic vs. Coding

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Test 3: Upstream vs. Downstream

Downstream Conservation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Conservation for TF motif discovery

1. Enumerate motif seeds

• Six non-degenerate characters with variable size gap in the middle

2. Score seed motifs

- Use a conservation ratio corrected for composition and small counts to rank seed motifs
- 3. Expand seed motifs

- Use expanded nucleotide IUPAC alphabet to fill unspecified bases around seed using hill climbing
- 4. Cluster to remove redundancy
 - Using sequence similarity

Learning motif degeneracy using evolution

- Record frequency with which one sequence is "replaced" by another in evolution
- Use this to find clusters of k-mers that correspond to a single motif

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Tanay, Amos et al. "A global view of the selection forces in the evolution of yeast cis-regulation." Genome Research 14, no. 5 (2004): 829-834.

Tanay, Genome Research 2004 55

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

Validation of the discovered motifs

- Because genome-wide motif discovery is *de novo*, we can use functional datasets for validation
 - Enrichment in co-regulated genes
 - Overlap with TF binding experiments
 - Enrichment in genes from the same complex
 - Positional biases with respect to transcription start
 - Upstream vs. downstream / inter vs. intra-genic bias
 - Similarity to known transcription factor motifs
- Each of these metrics can also be used for discovery
 - In general, split metrics into discovery vs. validation
 - As long as they are *independent* !
 - Strategies that combine them all lose ability to validate
 - Directed experimental validation approaches are then needed

Similarity to known motifs

- If discovered motifs are real, we expect them to match motifs in large databases of known motifs
- We find this (significantly higher than with random motifs)
- Why not perfect agreement? 70/174 mammalian motifs
 - Many known motifs are not conserved
 - Known motifs are biased; may have missed real motifs

MCS	Discovered motif	Known Factor	×
46.8	GGGCGG R	SP-1	Ξ.
34.7	GCCATnTTg	YY1	
32.7	CACGTG	MYC	7
31.2	G ATTGGY	NF-Y	0
30.8	TGA n TCA	AP-1	H
29.7	GGGAGG RR	MAZ	
29.5	TGACGTMR	CREB	2
26.0	CGGCCATYK	NF-MUE1	
25.0	TGACCTTG	ERR	2
22.6	CCGGAARY	ELK-1	2
19.8	S CGGAAG Y	GABP	3
17.9	CA ⊺ TTCC K	STAT1	

MCS	Discovered motif	Known Factor	St
65.6	CTAATTAAA	en	נפ
57.3	TTKCAATTAA	repo	5
54.9	WATTRATTK	ara	5
54.4	AAATTATATGC	prd	
51	GCAATAAA	vvl	
46.7	DTAATRITRYN	Ubx	a t
45.7	TGATTAAT	ар	
43.1	YMATTAAAA	abd-A	
41.2	AAACNNGTT		ש
40	RATTKAATT		N
39.5	GCACGTGT	ftz	0
38.8	AACASCTG	br-Z3	0

35/145 fly motifs

Positional bias of motif matches

- Motifs are involved in initiation of transcription
- → Motif matches biased versus TSS
 - 10% of fly motifs
 - 34% of mammalian motifs
- → Depletion of TF motifs in coding sequence
 - 57% of fly motifs
- →Clustering of motif matches
 - 19% of fly motifs

Motifs have functional enrichments

For both fly (top) and mammals (bottom), motifs are enriched in genes expressed in specific tissues

Reveals modules of cooperating motifs

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Motif instance identification

How do we determine the functional binding sites of regulators?

Kheradpour, Stark, Roy, Kellis, Genome Research 2007 61

Experimental target identification: ChIP-chip/seq

Limitations :

- Antibody availability
- **Restricted to specific** stages/tissues
- **Biological functionality of** most binding sites unknown
- Resolution can be limited (can't usually identify the precise base pairs)

Ren et al., 2000; lyer et al., 2001 (ChIP-chip) Robertson et al., 2007 (ChIP-seq)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Computational target identification

- Single genome approaches using motif clustering (e.g. Berman 2002; Schroeder 2004; Philippakis 2006)
 - Requires set of specific factors that act together
 - Miss instances of motifs that may occur alone
- Multi-genome approaches (phylogentic footprinting) (e.g. Moses 2004; Blanchette and Tompa 2002; Etwiller 2005; Lewis 2003)
 - Tend to either require absolute conservation or have a strict model of evolution

Challenges in target identification

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Simple case

- Instance fully conserved in orthologous position near genes

- Motif turn-around/movement
 - Motif instance is not found in orthologous place due to birth/death or alignment errors
- Distal/missing matches
 - Due to sequencing/assembly errors or turnover
 - Distal instances can be difficult to assign to gene

Computing Branch Length Score (BLS)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Branch Length Score -> Confidence

- 1. Evaluate chance likelihood of a given score
 - Sequence could also be conserved due to overlap with un-annotated element (e.g. non-coding RNA)
- 2. Account for differences in motif composition and length
 - For example, short motif more likely to be conserved by chance

Branch Length Score Confidence

- 1. Use motif-specific shuffled control motifs determine the expected number of instances at each BLS by chance alone or due to non-motif conservation
- 2. Compute Confidence Score as fraction of instances over noise at a given BLS (=1 false discovery rate)

Producing control motifs

Computing enrichments: background vs. foreground

#in foreground	size of foreground
#in background	size of background

- Background vs. forgeround
 - co-regulated promoters vs. all genes
 - Bound by TF vs. other intergenic regions
- Enrichment: fraction of motif instances in foreground vs. fraction of bases in foreground
- Correct for composition/conservation
 level: compute enrichmt w/control motifs
 - Fraction of motif instances can be compared to fraction of control motif instances in foreground
 - A hypergeometric p-value can be computed (similar to χ^2 , but better for small numbers)
- Fractions can be made more conservative using a binomial confidence interval

Confidence selects for functional instances

1. Confidence selects for transcription factor motif instances in promoters and miRNA motifs in 3' UTRs

Validation of discovered motif instances

Use independent experimental evidence Look for functional biases / enrichments

Confidence selects for functional instances

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- 1. Confidence selects for transcription factor motif instances in promoters and miRNA motifs in 3' UTRs
- 2. miRNA motifs are found preferentially on the plus strand, whereas no such preference is found for TF motifs
Increased sensitivity using BLS

Figure 3 B removed due to copyright restrictions. Source: Kheradpour, Pouya et al. "Reliable prediction of regulator targets using 12 Drosophila genomes." Genome Research 17, no. 12 (2007): 1919-1931.

Intersection with CTCF ChIP-Seq regions

ChIP-Seq and ChIP-Chip technologies allow for identifying binding sites of a motif experimentally

- Conserved CTCF motif instances highly enriched in ChIP-Seq sites
- High enrichment does not require low sensitivity
- Many motif instances are verified

Enrichment found for many factors

Mammals

Enrichment increases in conserved bound regions

3. Enrichment in intersection is dramatically higher Human: Barski, et al., Cell (2007)

Mouse: Bernstein, unpublished 76

More enrichment when binding

 0% confidence (all instances)
50% confidence human
50% confidence

human+mouse

Enrichment in ChIP regions

Human: Barski, *et al., Cell* (2007) Mouse: Bernstein, unpublished

- 1. ChIP bound regions may not be conserved
- 2. For CTCF we also have binding data in mouse
- 3. Enrichment in intersection is dramatically higher
- 4. Trend persists for other factors where we have multi-species ChIP data

Comparing ChIP to Conservation

- 1. Motifs at 60% confidence and ChIP have similar enrichments (depletion for the repressor Snail) in the functional promoters
- 2. Enrichments persist even when you look at non-overlapping subsets
- 3. Intersection of two regions has strongest signal
- 4. Evolutionary and experimental evidence is complementary
 - ChIP includes species specific regions and differentiate tissues ٠
 - Conserved instances include binding sites not seen in tissues surveyed ٠

ChIP data from: Zeitlinger, et al., G&D (2007); Sandmann, et al., G&D (2007); Sandmann, et al., Dev Cell (2006)

Fly regulatory network at 60% confidence

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Several connections confirmed by literature (directly or indirectly)

Global view of instances allows us to make network level observations:

- 46% of targets were co-expressed with their factor in at least one tissue ($P < 2 \times 10^{-3}$)
- TFs were more targeted by TFs ($P < 10^{-20}$) and by miRNAs ($P < 5 \times 10^{-5}$)
- TF in-degree associated with miRNA in-degree (high-high: P < 10⁻⁴; low-low P < 10⁻⁶)

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ii} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

Challenges in regulatory genomics

Recitation tomorrow: in vitro motif identification

Courtesy of the authors. Used with permission. Source: Ray, Partha, and Rebekah R. White. "Aptamers for targeted drug delivery." Pharmaceuticals 3, no. 6 (2010): 1761-1778.

SELEX (Systematic Evolution of Ligands by Exponential Enrichment; Klug & Famulok, 1994)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

PBMs (Protein binding microarrays; Mukherjee, 2004) Double stranded DNA arrays

- PBMs: Protein binding microarrays
- SELEX: Selectionbased motif identiifcation
 - De Bruijn graphs to generate PBM probes From k-mers to motifs
- Gapped motifs
- Degenerate motifs and DNA bending (DNA shape)
- Relaxing independence assumptions in PWMs

Motif discovery overview

- 1. Introduction to regulatory motifs / gene regulation
 - Two settings: co-regulated genes (EM,Gibbs), de novo
- 2. Expectation maximization: Motif matrix \Leftrightarrow positions
 - E step: Estimate motif positions Z_{ij} from motif matrix
 - M step: Find max-likelihood motif from all positions Z_{ij}
- 3. Gibbs Sampling: Sample from joint (M,Z_{ii}) distribution
 - Sampling motif positions based on the Z vector
 - More likely to find global maximum, easy to implement
- 4. Evolutionary signatures for de novo motif discovery
 - Genome-wide conservation scores, motif extension
 - Validation of discovered motifs: functional datasets
- 5. Evolutionary signatures for instance identification
 - − Phylogenies, Branch length score → Confidence score
 - Foreground vs. background. Real vs. control motifs.

6.047 / 6.878 / HST.507 Computational Biology Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.