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An error of 15 percent is often small compared to the other inaccuracies in an approximate 
computation, so this method of approximate minimization is a valuable time-saver. 

Now return to the original problem: determining the Bohr radius. The approximate min­
imization predicts the correct value. Even if the method were not so charmed, there is no 
point in doing a proper, calculus minimization. The calculus method is too accurate given 
the inaccuracies in the rest of the derivation. 

Engineers understand this idea of not over-engineering a system. If a bicycle most often 
breaks at welds in the frame, there is little point replacing the metal between the welds 
with expensive, high-strength aerospace materials. The new materials might last 100 years 
instead of 50 years, but such a replacement would be overengineering. To improve a bicy­
cle, put effort into improving or doing without the welds. 

In estimating the Bohr radius, the kinetic-energy estimate uses a crude form of the uncer­
tainty principle, ∆p∆x ∼ ~, whereas the true statement is that ∆p∆x ≥ ~/2. The estimate 
also uses the approximation EKinetic ∼ (∆p)2/m. This approximation contains m instead of 
2m in the denominator. It also assumes that ∆p can be converted into an energy as though 
it were a true momentum rather than merely a crude estimate for the root-mean-square 
momentum. The potential- and kinetic-energy estimates use a crude definition of position 
uncertainty ∆x: that ∆x ∼ r. After making so many approximations, it is pointless to mini­
mize the result using the elephant gun of differential calculus. The approximate method is 
as accurate as, or perhaps more accurate than the approximations in the energy. 

This method of equating competing terms is balancing. We balanced the kinetic energy 
against the potential energy by assuming that they are roughly the same size. The conse­
quence is that 

~2 
.a0 ∼ 

me(e2/4πε0)

Nature could have been unkind: The potential and kinetic energies could have differed by 
a factor of 10 or 100. But Nature is kind: The two energies are roughly equal, except for a 
constant that is nearly 1. ‘Nearly 1’ is also called of order unity. This rough equality occurs 
in many examples, and you often get a reasonable answer by pretending that two energies 
(or two quantities with the same units) are equal. When the quantities are potential and 
kinetic energy, as they often are, you get extra safety: The so-called virial theorem protects 
you against large errors (for more on the virial theorem, see any intermediate textbook on 
classical dynamics). 

7.5 Bending of light by gravity 

Rocks, birds, and people feel the effect of gravity. So why not light? The analysis of that 
question is a triumph of Einstein’s theory of general relativity. I can calculate how gravity 
bends light by solving the so-called geodesic equations from general relativity: 

d2xβ β dxµ dxν 

dλ2 + Γ µν dλ dλ 
= 0. 
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To compute the Christoffel symbols Γµν
β requires solving for the metric tensor gµν, which 

requires solving the curvature equations Rµν = 0. 

The curvature equations are a shorthand for ten partial-differential equations. The equa­
tions are rich in mathematical interest but are a nightmare to solve. The equations are nu­
merous – that’s one problem – but worse, they are not linear. So the standard trick, which 
is to guess a type of solution and form new solutions by combining the basic types, does 
not work. You can spend a decade learning advanced mathematics to solve the equations 
exactly. Or you can accept the great principle of analysis: When the going gets tough, lower 
your standards. If I sacrifice accuracy, I can explain light bending in less than one thousand 
pages using mathematics and physics that you (and I!) already know. 

The simpler method is dimensional analysis, in the usual three steps: 

1.	 Find the relevant parameters. 

2.	 Find dimensionless groups. 

3.	 Use the groups to make the most general dimensionless statement. 

4.	 Add physical knowledge to narrow the possibilities. 

The following sections do each step. 

7.5.1 Finding parameters 

The first step in a dimensional analysis is to decide what physical parameters the bending 

1.	 The list has to include the quantity to solve for. So the angle θ is the first item in the list. 

2.	 The mass of the sun, m, has to affect the angle. Black holes greatly deflect light, probably 
because of their huge mass. 

3.	 A faraway sun or black hole cannot strongly affect the path (near the earth light seems 
to travel straight, in spite of black holes all over the universe); therefore r, the distance 
from the center of the mass, is a relevant parameter. The phrase ‘distance from the 
center’ is ambiguous, since the light is at various distances from the center. Let r be the 
distance of closest approach. 

4.	 The dimensional analysis needs to know that gravity produces the bending. The para­
meters listed so far do not create any forces. So include Newton’s gravitational constant 
G. 

Here is the same diagram with important parameters labeled: 

angle can depend on. An unlabeled diagram prods me into thinking of labels, many of 
which are parameters of the problem: 

sun

Here are reasons to include various parameters: 
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sun
mass m

θ

r

Here is a table of the parameters and their dimensions: 

Parameter Meaning Dimensions 
θ angle – 
m mass of sun M 
G Newton’s constant L3T−2M−1 

r distance from center of sun L 

where, as you might suspect, L, M, and T represent the dimensions of length, mass, and 
time, respectively. 

7.5.2 Dimensionless groups 

What are the dimensionless groups? The parameter θ is an angle, which is already dimen­
sionless. The other variables, G, m, and r, cannot form a second dimensionless group. To 
see why, following the dimensions of mass. It appears only in G and m, so a dimensionless 
group would contain the product Gm, which has no mass dimensions in it. But Gm and 
r cannot get rid of the time dimensions. So there is only one independent dimensionless 
group, for which θ is the simplest choice. 

I want a second dimensionless group because otherwise my analysis seems like nonsense. 
Any physical solution can be written in dimensionless form; this idea is the foundation 
of dimensional analysis. With only one dimensionless group, θ, I have to conclude that θ 

depends on no variables at all: 

θ = function of other dimensionless groups, 

but there are no other dimensionless groups, so 

θ = constant. 

This conclusion is crazy! The angle must depend on at least one of m and r. My physical 
picture might be confused, but it’s not so confused that neither variable is relevant. So I 
need to make another dimensionless group on which θ can depend. Therefore, I return to 
Step 1: Finding parameters. 

The list so far lacks a crucial parameter. 

What physics have I neglected? Free associating often suggests the missing parameter. 
Unlike rocks, light is difficult to deflect, otherwise humanity would not have waited until 
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the 1800s to study the deflection, whereas the path of rocks was studied at least as far back 
as Aristotle and probably for millions of years beforehand. Light travels much faster than 
rocks, which may explain why light is so difficult to deflect: The gravitational field ‘gets 
hold of it’ only for a short time. But none of my parameters distinguish between light 
and rocks. Therefore I should include c, the speed of light. It introduces the fact that I’m 
studying light, and it does so with a useful distinguishing parameter, the speed. 

Here is the latest table of parameters and dimensions: 

Parameter Meaning Dimensions 
θ angle – 
m mass of sun M 
G Newton’s constant L3T−2M−1 

r distance from center of sun L 
c speed of light LT−1 

Length is strewn all over the parameters (it’s in G, r, and c). Mass, however, appears in only 
G and m, so I already know I need a combination such as Gm to cancel out mass. Time also 
appears in only two parameters: G and c. To cancel out time, I need to form Gm/c2. This 
combination has one length in it, so a dimensionless group is Gm/rc2. 

7.5.3 Drawing conclusions 

The most general relation between the two dimensionless groups is 

Gm 
θ = f . 

rc2 

Dimensional analysis cannot tell me the correct function f . 

Physical reasoning and symmetry narrow the possibilities. First, strong gravity – from a 
large G or m – should increase the angle. So f should be an increasing function. Now try 
symmetry: Imagine a world where gravity is repulsive or, equivalently, the gravitational 
constant is negative. Then the angle should also be negative, so f should be an odd func­
tion. This symmetry argument eliminates choices like f (Gm/rc2) ∼ (Gm/rc2)2. 

The simplest guess is that f is the identity function. Then the bending angle is 

Gm 
θ = 

rc2 .


There is likely a dimensionless constant in f :


Gm 
θ = 7

rc2 

or 

Gm 
θ = 0.3

rc2 

are also possible. This freedom means 
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Gm 
θ ∼ 

rc2 . 

7.5.4 Comparison with exact calculations 

Different theories of gravity give the same result 

Gm 
θ ∼ 

rc2 ; 

the only variation is in the value for the missing dimensionless constant. Here are those 
values from exact calculation: 

Gm

θ = 

rc2 × 




1 (simplest guess);

2 (Newtonian gravity);

4 (Einstein’s theory).


Here is a rough explanation of the origin of those constants. The 1 for the simplest guess 
is just that. The 2 for Newtonian gravity is from integrating angular factors like cosine and 
sine that determine the position of the photon as it moves toward and past the sun. 

The most interesting constant is the 4 for general relativity, which is twice the Newtonian 
value because light moves at the speed of light. The extra bending is a consequence of Ein­
stein’s theory of special relativity putting space and time on the same level. The theory of 
general relativity then formulates gravity in terms of the curvature of spacetime. Newton’s 
theory is the limit of general relativity that considers only time curvature; general relativ­
ity itself also calculates the space curvature. Since most objects move much slower than the 
speed of light, meaning that they travel much farther in time than in space, they feel mostly 
the time curvature. The Newtonian analysis is fine for those objects. Since light moves at 
the speed of light, it sees equal amounts of space and time curvature, so it bends twice as 
far as the Newtonian theory would predict. 

7.5.5 Numbers! 

At the surface of the Earth, the strength is 

Gm 6.7 10−11 m3 s−2 kg−1 
× 6.0 1024 kg 

rc2 ∼ 
6.4 106 

· 

m × 3.0 108 m s−1 × 3.0 
· 

108 m s−1 
∼ 10−9 . 

· · · 

This miniscule value is the bending angle (in radians). So if physicists want to show that 
light bends, they had better look beyond the earth! That statement is based on another 
piece of dimensional analysis and physical reasoning, whose result I quote without proof: 
A telescope with mirror of diameter d can resolve angles roughly as small as λ/d, where 
λ is the wavelength of light. One way to measure the bending of light is to measure the 
change in position of the stars. A lens that could resolve an angle of 10−9 has a diameter of 
at least 

d ∼ λ/θ ∼ 
0.5 · 

10
10
−

−

9

6 m 
∼ 500 m. 
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Large lenses warp and crack; one of the largest lenses made is 6 m. So there is no chance of 
detecting an angle of 10−9. 

Physicists therefore searched for another source of light bending. In the solar system, the 
largest mass is the sun. At the surface of the sun, the field strength is 

Gm 6.7 · 10−11 m3 s−2 kg−1 
× 2.0 · 1030 kg 

10−6 
≈ 0.4′′. 

rc2 ∼ 
7.0 108 m × 3.0 108 m s−1 × 3.0 108 m s−1 

∼ 2.1 · 
· · · 

This angle, though small, is possible to detect: The required lens diameter is roughly 

d ∼ λ/θ ∼ 
0.5 · 10−6 m 

∼ 20 cm.
2.1 10−6 · 

The eclipse expedition of 1919, led by Arthur Eddington of Cambridge, tried to measure 
exactly this effect. 

For many years Einstein believed that his theory of gravity would predict the Newton­
ian value, which turns out to be 0.87 arcseconds for light just grazing the surface of the 
sun. The German mathematician, Soldner, derived the same result in 1803. Fortunately 
for Einstein’s reputation, the eclipse expeditions that went to test his (and Soldner’s) pre­
diction got rained or clouded out. By the time an expedition got lucky with the weather 
(Eddington’s in 1919), Einstein had invented a new theory of gravity, which predicted 1.75 
arcseconds. The goal of Eddington’s expedition was to decide between the Newtonian and 
general relativity values. The measurements are difficult, and the results were not accurate 
enough to decide which theory was right. But 1919 was the first year after the World War, in 
which Germany and Britain had fought each other almost to oblivion. A theory invented 
by a German, confirmed by an Englishman (from Newton’s university, no less) – such a 
picture was comforting after the trauma of war, so the world press and scientific commu­
nity saw what they wanted to: Einstein vindicated! A proper confirmation of Einstein’s 
prediction came only with the advent of radio astronomy, which could measure small de­
flections accurately. I leave you with this puzzle: If the accuracy of a telescope is λ/d, how 
could radio telescopes be more accurate than optical ones, since radio waves have a longer 
wavelength than light has?! 

7.6 Buckingham Pi theorem 

The second step is in a dimensional analysis is to make dimensionless groups. That task is 
simpler by knowing in advance how many groups to look for. The Buckingham Pi theorem 
provides that number. I derive it with a series of examples. 

Here is a possible beginning of the theorem statement: The number of dimensionless groups 
is. . . . Try it on the light-bending example. How many groups can the variables θ, G, m, r, 
and c produce? The possibilities include θ, θ2, Gm/rc2, θGm/rc2, and so on. The possibilities 
are infinite! Now apply the theorem statement to estimating the size of hydrogen, before 
including quantum mechanics in the list of variables. That list is a0 (the size), e2/4πε0, and 
me. That list produces no dimensionless groups. So it seems that the number of groups 
would be zero – if no groups are possible – or infinity, if even one group is possible. 


