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5 Proportional reasoning 
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So imagine a mass m connected to the wall by a spring with spring constant 
k. If disturbed, the mass oscillates. The period of the system is the time for

the mass to make a round trip through the equilibrium position.


Extend the spring by a distance x0; this displacement is the amplitude. To see 
how it affects the period, make an approximation, which will be an example 
of throwing away information (the topic of Part 3). The approximation is to pretend that 
the pendulum moves with a constant speed v. Then the period is 

distance 
,T ∼ 

speed v 

and the distance that the mass travels in one period is 4x0. Ignore the factor of 4: 

.T ∼ 
x
v 
0 

Proportional reasoning helps us estimate v by an energy argument. The initial potential 
energy is PE ∼ kx2

0 or 

PE ∝ x2
0. 

The maximum kinetic energy, which we use as a proxy for the typical kinetic energy, is the 
initial potential energy, so 

KEtypical ∝ x2 
0 

as well. The typical velocity is KEtypical, so 

vtypical ∝ x0. 

That result is great news because it means that the period is proportional to 1: 

x0 0 = x0.T ∝ 
x0 

In other words, the period is independent of amplitude. 

5.2 Mountain heights 

The next example of proportional reasoning explains why mountains cannot become too 
high. Assume that all mountains are cubical and made of the same material. Making that 
assumption discards actual complexity, the topic of Part 3. However, it is a useful approxi­
mation. 

To see what happens if a mountain gets too large, estimate the pressure at the base of the 
mountain. Pressure is force divided by area, so estimate the force and the area. 

The area is the easier estimate. With the approximation that all mountains are cubical and 
made of the same kind of rock, the only parameter distinguishing one mountain from an­
other is its side length l. The area of the base is then l2. 
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Next estimate the force. It is proportional to the mass: 

F ∝ m. 

In other words, F/m is independent of mass, and that independence is why the proportion­
ality F ∝ m is useful. The mass is proportional to l3: 

m ∝ volume ∼ l3 . 

In other words, m/l3 is independent of l; this independence is why the proportionality 
m ∝ l3 is useful. Therefore 

F ∝ l3 . 

The force and area results show that the pressure is proportional to l: 

F l3 
p ∼ 

A 
∝ 

l2 = l. 

With a large-enough mountain, the pressure is larger than the maximum pressure 

pressure
∝ l

force
∝ l3

mass
∝ l3

volume
∝ l3

area
∝ l2

that the rock can withstand. Then the rock flows like a liquid, and the mountain 
cannot grow taller. 

This estimate shows only that there is a maximum height but it does not compute the 
maximum height. To do that next step requires estimating the strength of rock. Later 
in this book when we estimate the strength of materials, I revisit this example. 

This estimate might look dubious also because of the assumption that mountains are cu­
bical. Who has seen a cubical mountain? Try a reasonable alternative, that mountains are 
pyramidal with a square base of side l and a height l, having a 45◦ slope. Then the volume 
is l3/3 instead of l3 but the factor of one-third does not affect the proportionality between force and 
length. Because of the factor of one-third, the maximum height will be higher for a pyrami­
dal mountain than for a cubical mountain. However, there is again a maximum size (and 
height) of a mountain. In general, the argument for a maximum height requires only that 
all mountains are similar – are scaled versions of each other – and does not depend on the 
shape of the mountain. 

5.3 Animal jump heights 

We next use proportional reasoning to understand how high animals jump, as a function 
of their size. Do kangaroos jump higher than fleas? We study a jump from standing (or 
from rest, for animals that do not stand); a running jump depends on different physics. 
This problem looks underspecified. The height depends on how much muscle an animal 
has, how efficient the muscles are, what the animal’s shape is, and much else. The first 
subsection introduces a simple model of jumping, and the second refines the model to 
consider physical effects neglected in the crude approximations. 


