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Chapter 4 
Proportional reasoning


4.1 Animal jump heights 

We next proportional reasoning to understand how high animals jump, as a function of 
their size. Do kangaroos jump higher than fleas? We study a jump from standing (or 
from rest, for animals that do not stand); a running jump depends on different physics. 
This problem looks underspecified. The height depends on how much muscle an animal 
has, how efficient the muscles are, what the animal’s shape is, and much else. The first 
subsection introduces a simple model of jumping, and the second refines the model to 
consider physical effects neglected in the crude approximations. 

4.1.1 Simple model 

We want to determine only how jump height varies with body mass. Even this problem 
looks difficult; the height still depends on muscle efficiency, and so on. Let’s see how far 
we get by just plowing along, and using symbols for the unknown quantities. Maybe all 
the unknowns cancel. 

We want an equation for the height h in the form h ∼ mβ, where m is the animal’s mass and 

m

m

h

β is the so-called scaling exponent. 

Jumping requires energy, which must be provided by muscles. This first, simplest model 
equates the required energy to the energy supplied by the animal’s muscles. 

The required energy is the easier estimation: An animal of mass m jumping to a height 
h requires an energy Ejump ∝ mh. Because all animals feel the same gravity, this relation 
does not contain the gravitational acceleration g. You could include it in the equation, 
but it would just carry through the equations like unused baggage on a trip. 

The available energy is the harder estimation. To find it, divide and conquer. It is the 
product of the muscle mass and of the energy per mass (the energy density) stored in mus­
cle. 

To approximate the muscle mass, assume that a fixed fraction of an animals mass is muscle, 
i.e. that this fraction is the same for all animals. If α is the fraction, then 
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mmuscle ∼ αm 

or, as a proportionality, 

mmuscle ∝ m, 

where the last step uses the assumption that all animals have the same α. 

For the energy per mass, assume again that all muscle tissues are the same: that they store 
the same energy per mass. If this energy per mass is E, then the available energy is 

Eavail ∼ Emmuscle 

or, as a proportionality, 

Eavail ∝ mmuscle , 

where this last step uses the assumption that all muscle has the same energy density E. 

Here is a tree that summarizes this model: 

Now finish propagating toward the root. The available energy is 

jump height h

energy required

h m g

energy available

muscle mass

animal’s mass m muscle fraction

energy density
in muscle

Eavail ∝ m. 

So an animal with three times the mass of another animal can store roughly three times the 
energy in its muscles, according to this simple model. 

Now compare the available and required energies to find how the jump height as a function 
of mass. The available energy is 

Eavail ∝ m 

and the required energy is 

Erequired ∝ mh.


Equate these energies, which is an application of conservation of energy. Then mh ∝ m or


h ∝ m0
. 

In other words, all animals jump to the same height. 
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The result, that all animals jump to the same height, seems 
surprising. Our intuition tells us that people should be able 
to jump higher than locusts. The graph shows jump heights 
for animals of various sizes and shapes [source: Scaling: 
Why Animal Size is So Important [1], page 178]. Here is the 
data: 

Animal Mass (g) Height (cm) 
Flea 5 10−4 20· 

Click beetle 4 10−2 30· 

Locust 3 59 
Human 7 104 60· 
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The height varies almost not at all when compared to variation in mass, so our result is 
roughly correct! The mass varies more than eight orders of magnitude (a factor of 108), yet 
the jump height varies only by a factor of 3. The predicted scaling of constant h (h ∝ 1) is 
surprisingly accurate. The largest error shows up at the light end; fleas and beetles do not 
jump as high as larger animals. 


