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Chapter 4 
Symmetry 

Symmetry is often thought of as a purely geometric concept, but it is useful in a wide 
variety of problems. Whenver you can use symmetry, use it and will simplify the solution. 
The following sections illustrate symmetry in calculus, geometry, and heat transfer. 

4.1 Calculus 

For what value of x is 3x − x2 a maximum? 

The usual method is to take the derivative: 

d 
(3x − x2) = 3 − 2x = 0,

dx


whereupon xmax = 3/2.


Although differentiating is a general method, its generality comes at a cost: that its results 
are often hard to interpret. One does the manipulations, and whatever formulas show up 
at the end, so be it. So, if you can find a simplification, you are likely to get a more insight 
into why the answer came out the way that it did. 

For this problem, symmetry simplifies it enough that nothing remains to do. To see how, 
first factor the equation into x(3 − x). Let xmax be where it has its maximum. The factors 
x and 3 − x can be swapped using the substitution x′ = 3 − x. In terms of x′, the problem 
becomes maximizing (3 − x′)x′. This formula has the same structure as the original one 
x(3 − x)! So the symmetry operation preserves this structure. Since the x or x′ location 
of the maximum depends only on the structure, the location has the same numerical value 
whether in the x or x′ coordinate systems. So it is said to be invariant under the substitution 
operation. Therefore, in this problem, the x′ → 3 − x substitution is a symmetry. 

Since x′ = 3− x and, as a result of symmetry, x′ = xmax, the only solution is xmax = x′ = max max 

3/2. 

A similar, perhaps more telegraphic argument, is that the maximum is halfway between 
the two roots x = 0 and x = 3, so the maximum is, again, at xmax = 3/2. This argument 
implicitly contains symmetry, which is the justification for saying that the maximum is 
midway between the roots. 
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The next calculus example, from electrical and mechanical engineering, is to maximize the 
response of a second-order system such as a damped spring–mass system or an LRC cir­
cuit. The response depends on the frequency and amplitude of the driving input, and is 
measured as the ratio of output to input amplitude. This ratio is the gain A, and a few 
applications of Newton’s second law produces 

jω 
A(ω) = 

1 + jω/Q − ω2 , 

where Q is the quality factor of the system (the inverse of the damping), j is 
√
−1 and ω is 

measured in units of the natural frequency. 

The problem is to find the peak response, meaning the frequency ωmax that maximizes the 
magnitude of the gain and the gain at that frequency. The magnitude of the gain is 

ω 
|A(ω)| = √ 

(1 − ω2)2 + ω2/Q2 

Because of the squares and square roots, a brute-force approach by taking the derivative 
will generate messy equations. So, use symmetry. What is the symmetry operation? It will 
be be a flip of the coordinate system, but around what point? The value ω = 1 is special 
because that choice eliminates the denominator term (1 − ω2)2, which helps to minimize 
the denominator and maximize the gain. On the other hand, decreasing ω slightly could 
increase the gain because, at the cost of increasing (1 − ω2)2, it decreases the ω2/Q2 term 
in the denominator. On the other hand, increasing ω slightly might produce a higher gain 
because it increases the numerator of the gain. 

To summarize: ω = 1 is special but slightly higher or lower than ω = 1 could be optimal 
too. Since ω = 1 is special, use it as the point that is preserved by the symmetry operation. 
For a symmetry operation, interchange the ω < 1 and ω > 1 ranges. Frequencies mostly 
matter as ratios to one another – for example in music – so do the interchange by defining 
ω′ = 1/ω rather than ω′ = 1 − ω. With the reciprocal definition, the problem becomes to 
maximize the magnitude of A(ω′), where 

j/ω′
A(ω′) = . 

1 + j/ω′Q − 1/ω′2

Multiply numerator and denominator by 1 in the form of ω′2/ω′2: 

jω′
A(ω′) = . 

ω′2 + jω/Q − 1 

Its magnitude is 

ω′
|A(ω′)| = √ 

(1 − ω′2)2 + ω′2/Q2 
. 

This formula has the same structure as the magnitude in terms of ω itself, and this infor­
mation is enough to solve for ωmax. Because of the isomorphic structure, ω′max = ωmax. But 
by construction ω′ = 1/ω, so ω′max is also 1/ωmax. The only solution is ωmax = ±1. Since the 
negative root is boring, the relevant solution is ωmax = 1 and the response there is 
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21 4 Symmetry 

j
A(ωmax) = = jQ.

1/Q 

The factor of Q in the maximum response says that a lightly damped system, where Q� 1, 
can reach a high amplitude if you push it at the so-called resonant frequency. The j says 
that the response at this resonant frequency lags the input by 90 degrees. In other words, 
the greatest push happens when the velocity, not the displacement, is a maximum. 

4.2 Graphical symmetry 

The following pictorial problem illustrates symmetry applied to a geometric problem, the 
traditional domain of symmetry: 

How do you cut an equilateral triangle into two equal halves using the shortest, not-
necessarily-straight path? 

Here are several candidates among the infinite set of possibilities for the path. 

l = 1/
√

2 l =
√

3/2 l = 1 l = (a mess)

Let’s compute the lengths of each bisecting path, with length measured in units of the 
triangle side. The first candidate encloses an equilateral triangle with one-half the area of 
the original triangle, so the sides of the smaller, shaded triangle are smaller by a factor of
√

2. Thus the path, being one of those sides, has length 1/
√

2. In the second choice, the 
path is an altitude of the original triangle, which means its length is 

√
3/2, so it is longer 

than the first candidate. The third candidate encloses a diamond made from two small 
equilateral triangles. Each small triangle has one-fourth the area of the original triangle 
with side length one, so each small triangle has side length 1/2. The bisecting path is two 
sides of a small triangle, so its length is 1. This candidate is longer than the other two. 

The fourth candidate is one-sixth of a circle. To find its length, find the radius r of the circle. 
One-sixth of the circle has one-half the area of the triangle, so 

1 1 1 
√

3 
πr2 .︸︷︷︸ 

= 6 × 
2

Atriangle = 6 × 
2 
× 

2 
× 1 × 

2 
Acircle 

Atriangle 

Multiplying the pieces gives 

3
√

3 
πr2 = ,

4 

and 


