
MIT OpenCourseWare 
http://ocw.mit.edu 

6.055J / 2.038J The Art of Approximation in Science and Engineering
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


40 40

40 40
2008-01-14 22:31:34 / rev 55add9943bf1

Chapter 6 
Box models and conservation


6.1 Cube solitaire


Here is a game of solitaire that illustrates the theme of this chapter. The following 
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cube starts in the configuration in the margin; the goal is to make all vertices be 
multiples of three simultaneously. The moves are all of the same form: Pick any 
edge and increment its two vertices by one. For example, if I pick the bottom 
edge of the front face, then the bottom edge of the back face, the configuration 
becomes the first one in this series, then the second one: 
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Alas, neither configuration wins the game. 

Can I win the cube game? If I can win, what is a sequence of moves ends in all vertices 
being multiples of 3? If I cannot win, how can that negative result be proved? 

Brute force – trying lots of possibilities – looks overwhelming. Each move requires choosing 
one of 12 edges, so there are 1210 sequences of ten moves. That number is an overestimate 
because the order of the moves does not affect the final state. I could push that line of 
reasoning by figuring out how many possibilities there are, and how to list and check them 
if the number is not too large. But that approach is specific to this problem and unlikely to 
generalize to other problems. 

Instead of that specific approach, make the generic observation that this problem is 
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difficult because each move offers many choices. The problem would be simpler 
with fewer edges: for example, if the cube were a square. Can this square be turned 
into one where the four vertices are multiples of 3? This problem is not the original 
problem, but solving it might teach me enough to solve the cube. This hope motivates 
the following advice: When the going gets tough, the tough lower their standards. 
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6 Box models and conservation 
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The square is easier to analyze than is the cube, but standards can be lowered still more 
by analyzing the one-dimensional analog, a line. Having only one edge means that there 
is only one move: incrementing the top and bottom vertices. The vertices start with a 
difference of one, and continue with that difference. So they cannot be multiples of 3 
simultaneously. In symbols: a− b = 1. If all vertices were multiples of 3, then a− b would 
also be a multiple of 3. Since a − b = 1, it is also true that 

a − b ≡ 1 (mod 3), 

where the mathematical notation x ≡ y (mod 3) means that x and y have the same remain­
der (the same modulus) when dividing by 3. In this one-dimensional version of the game, 
the quantity a − b is an invariant: It is unchanged after the only move of increasing each 

a = 1 b = 0

c = 0d = 0

vertex on an edge. 

Perhaps a similar invariant exists in the two-dimensional version of the game. 
Here is the square with variables to track the number at each vertex. The one-
dimensional invariant a − b is sometimes an invariant for the square. If my move 
uses the bottom edge, then a and b increase by 1, so a − b does not change. If my 
move uses the top edge, then a and b are individually unchanged so a − b is again 
unchanged. However, if my move uses the left or right edge, then either a or b 
changes without a compensating change in the other variable. The difference d − c has a 
similar behavior in that it is changed by some of the moves. Fortunately, even when a − b 
and d− c change, they change in the same way. A move using the left edge increments a− b 
and d − c; a move using the right edge decrements a − b and d − c. So (a − b) − (d − c) is 
invariant! Therefore for the square, 

a − b + c − d ≡ 1 (mod 3), 

so it is impossible to get all vertices to be multiples of 3. 

The original, three-dimensional solitaire game is also likely to be impossible 
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to win. The correct invariant shows this impossibility. The quantity a − b + c −
d + f − g + h− e generalizes the invariant for the square, and it is preserved by 
all 12 moves. So 

a − b + c − d + f − g + h − e ≡ 1 (mod 3), 

which shows that all vertices cannot be made multiples of 3 simultaneously. 

Invariants – quantities that remain unchanged – are a powerful tool for solving problems. 
Physics problems are also solitaire games, and invariants (conserved quantities) are essen­
tial in physics. Here is an example: In a frictionless world, design a roller-coaster track so 
that an unpowered roller coaster, starting from rest, rises above its starting height. Perhaps 
a clever combination of loops and curves could make it happen. 

The rules of the physics game are that the roller coaster’s position is determined by New­
ton’s second law of motion F = ma, where the forces on the roller coaster are its weight and 
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the contact force from the track. In choosing the shape of the track, you affect the contact 
force on the roller coaster, and thereby its acceleration, velocity, and position. There are an 
infinity of possible tracks, and we do not want to analyze each one to find the forces and 
acceleration. An invariant, energy, simplifies the analysis. No matter what tricks the track 
does, the kinetic plus potential energy 

1 2mv + mgh 
2

is constant. The roller coaster starts with v = 0 and height hstart; it can never rise above 
that height without violating the constancy of the energy. The invariant – the conserved 
quantity – solves the problem in one step, avoiding an endless analysis of an infinity of 
possible paths. 

The moral of this section is: When there is change, look for what does not change. 

6.2 Flight 

How far can birds and planes fly? The theory of flight is difficult and involves vortices, 
Bernoulli’s principle, streamlines, and much else. This section offers an alternative ap­
proach: use conservation estimate the energy required to generate lift, then minimize the 
lift and drag contributions to the energy to find the minimum-energy way to make a trip. 

6.2.1 Lift 

Instead of wading into the swamp of vortices, study what does not change. In this case, the 
vertical component of the plane’s momentum does not change while it cruises at constant 
altitude. 

Because of momentum conservation, a plane must deflect air downward. If it did not, grav­
ity would pull the plane into the ground. By deflecting air downwards – which generates 
lift – the plane gets a compensating, upward recoil. Finding the necessary recoil leads to 
finding the energy required to produce it. 

Imagine a journey of distance s. I calculate the energy to produce lift in three steps: 

1.	 How much air is deflected downward? 

2.	 How fast must that mass be deflected downward in order to give the plane the needed 
recoil? 

3.	 How much kinetic energy is imparted to that air? 

The plane is moving forward at speed v, and it deflects air over an area L2 where L is the 
wingspan. Why this area L2, rather than the cross-sectional area, is subtle. The reason is that 
the wings disturb the flow over a distance comparable to their span (the longest length). So 
when the plane travels a distance s, it deflects a mass of air 

mair ∼ ρL2s. 


