Massachusetts institute of Technology Department of Nuclear Science and Engineering Department of Electrical Engineering and Computer Science

22.071/6.071 - Introduction to Electronics, Signals and Measurement Spring 2006

Homework 6 Due 3/22/06

Problem 1.

Calculate the currents i1(t) and i2(t) as shown on the following circuit

Problem 2.

Determine the voltage Vo for the following circuit. (Hint: superposition)

Problem 3.

For the circuit below, determine the Thevenin equivalent circuit seen by capacitor C. (Hint: it helps if you work out the problem symbolically and then substitute for the element values.)

Problem 4.

Tau finds a black box with 3 terminals labeled X, Y, Z. Tau, who took 6.071 last year, decides to make resistance measurements across the terminals at DC ($\omega = 0$ Hz) and at high frequency (ω large). She observes the following results:

	Resistance (Ω) at	
Measure resistance across	DC	High-Freq.
X – Y	∞	40
Y – Z	0	∞
X - Z	œ	∞

Which of the following equivalent circuits is inside Tau's black box?

Problem 5.

A motor is made up of a coil which has a resistance R and an inductance L. We will set up an experiment to measure the values of R and L. The circuit is shown below.

The motor runs with 60Hz power and all measurements will be performed with the real source power connected to it and operating at a constant load (steady state). Using a voltmeter set in AC mode (i.e measure the RMS value of a sinusoidal voltage) we perform the following measurements.

Vs = 220 Volts, Va = 75 Volts, Vm = 110 Volts

Use these measurements to determine R and L