
Dependent Sources: 
Introduction and analysis of circuits containing dependent sources. 
 
So far we have explored time-independent (resistive) elements that are also linear. We 
have seen that two terminal (one port) circuits can be modeled by simple circuits 
(Thevenin or Norton equivalent circuits) and that they have a straight line i-v 
characteristic. 
Here we introduce the idea of a dependent source. We will see that the 
use of dependent sources permits the use of feedback. Feedback can be used to control 
amplifiers and to build interesting transducers. 
 
Dependent Sources 
A dependent source is one whose value depends on some other variable in the circuit. An 
illustrative example of a dependent source is, 
 
 

black box
equivalent
of output
circuit

black box
equivalent
of input
circuit

v1
+
-

i

g v1

 
 
Here we see that there is an “input” circuit that develops a voltage, v1. 
 
In a separate part of the circuit there is a linear, voltage-dependent, current source that 
delivers a current given by 
 
 i g v1=  (1.1) 
 
Where g is a constant with the units of A/V. 
So the current that flows into the output circuit depends on the measurement of a voltage 
on the input circuit. 
 
Now clearly we could mimic a dependent source by looking at a meter and changing a 
potentiometer (for example) in relation to the reading. Here we will introduce circuits 
that carry out this function without any intervention. 
Notice that the above circuit is still linear since the output current depends linearly on the 
measured voltage. For now we will concern ourselves with only linear dependent sources. 
Later, we will see examples of non-linear dependent sources where the analysis will be 
somewhat more complex. 
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There are four general classes of linear dependent sources. Their names, acronyms and 
associated symbols are: 
 
 
 
Voltage Controlled Voltage Source: VCVS 
 

v1
+

-

i1

vs = A v1
 

   
 
Current Controlled Voltage Source: CCVS 
 

v1
+

-

i1

 
vs = r i1

 
 
 
Voltage Controlled Current Source: VCCS. 
 

v1
+

-

i1

    

is = g v1

 
 
Current Controlled Current Source: CCCS 
 

 

v1
+

-

i1

     

β i1is =

 
 
 
 
The parameters A, r, g, β, are real numbers, and v1 , i1 are voltages/currents in some 
circuit. 
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Circuit Analysis with Linear Dependent Sources. 
 
 
Linear dependent sources provide no new complications to circuit analysis. Kirchhoff’s 
laws still apply, and formal circuit analysis goes ahead just as before. The dependent 
source only introduces a constraint on the solution. 
The simplest example is where the measurement and dependent source are in two isolated 
circuits. 
 
Let’s consider the current amplifier circuit shown on Figure 1 . The circuit has one 
independent current source and one dependent current source. The dependent current 
source is a CCCS. We would like to determine the voltage vc as indicated. 
 

Is

ib

Rs Rb Rc vc
+

-

 

β ib 

 
Figure 1. Current Amplifier Circuit 

 
 
 
The left hand circuit is a current divider, and 
 

 Rsib Is
Rs Rb

=
+

 (1.2) 

 
The right hand circuit is a current source. The output voltage vc is given by 
 
 vc ib Rcβ=  (1.3) 
 
So now we see that the output voltage vc depends on the measured current ib of the input 
circuit. Combining Equations (1.2) and (1.3) we obtain 
 

 

gain

RsRcvc Is
Rb Rc

β=
+

 (1.4) 

 
So, the overall circuit behaves as an amplifier with the gain dependent on the resistors 
and the proportionality constant β. 
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Let’s now consider the slightly more interesting circuit shown on Figure 2. 
 
 

R1 R2

Is R3 v3
+

-
2 v3Vs=

 
 

Figure 2. Circuit with dependent voltage source 
 
Let’s use nodal analysis to solve for the currents and voltages in this circuit. 
 
Figure 3 shows the nodes of interest, the variables and the polarities. 
 
 

R1 R2

Is R3 v3
+

-
2 v3

i1 i2

i3

v1 v2

+ +

+

- -

-

node1 node2

Vs=

 
 

Figure 3. Nodal analysis of circuit with dependent sources 
 
KCL at node1 gives 
 

 
1 2

1 1 2 0
1 2

i Is i
Vs v v vIs

0

R R

+ − =
− −

+ − =
 (1.5) 

 
 
 
 
KCL at node2 gives 
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2 3 0

1 2 2 0
2 3

i i
v v v

R R

− =
−

− =
 (1.6) 

 
In matrix form, Equations (1.5) and (1.6) become 
 

 

1 1 1
12 3 2 1
21 1 1 0

2 1 2

Vsv IsR R R R
v

R R R

⎛ ⎞+ − ⎛ ⎞⎜ ⎟ +⎛ ⎞ ⎜=⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠− +⎜ ⎟ ⎝ ⎠⎝ ⎠

⎟
⎟

 (1.7) 

 
and the solution is given by 
 

 ( 2 3)( 1 )1
1 2 3

R R IsR Vsv
R R R
+ +

=
+ +

 (1.8) 

 

 3( 1 )2
1 2 3

R IsR Vsv
R R R

+
=

+ +
 (1.9) 

 
Now need to include the constraints of the dependent sources. These constraints are 
 
 2v v3=  (1.10) 
And 
 2 3Vs v=  (1.11) 
 
Substituting Equations (1.10) and (1.11) into Equations (1.8) and (1.9) we obtain 
 
 
 

 1( 2 3)1
1 2 3

IsR R Rv
R R R

+
=

+ +
 (1.12) 

 

 1 32
1 2

IsR Rv
3R R R

=
+ +

 (1.13) 
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Analysis of Circuits with Dependent Sources Using Superposition 
 
 
When employing the principle of superposition to a circuit that has dependent and 
independent sources we proceed as follows: 
 

• Leave dependent sources intact. 
• Consider one independent source at the time with all other independent sources 

set to zero. 
 
Let’s explore this with the following example: 
 
For the circuit on Figure 4 calculate the voltage v. 

R
A v

Vs

+

-

vIs

 
 

Figure 4. Circuit with dependent source. Analysis using superposition 
 
We proceed by first considering the effect of the current source acting alone. The circuit 
of  Figure 5 shows the corresponding circuit for which the independent voltage source Vs 
has been suppressed. 

R
A v1

+

-

v1Is

 
 

Figure 5. Circuit with the voltage source suppressed 
 
By applying KVL we obtain: 
 
 1 1v IsR Av 0− + =  (1.14) 
 
And v1 becomes 
 

 1
1
IsRv

A
=

+
 (1.15) 
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Next we evaluate the contribution to the output with the independent voltage source 
acting alone. The corresponding circuit is shown on Figure 6. 

R
A v2

Vs

+

-

v2

 
 

Figure 6. Circuit with the current source suppressed. 
 
Again applying KVL we have 
 
 2 2 0Av v Vs+ − =  (1.16) 
 
(Note that the voltage drop across R is zero since there is no current flowing in the 
circuit.) 
And v2 becomes 

 2
1
Vsv

A
=

+
 (1.17) 

 
And so the total voltage is written as the superposition of v1 and v2. 
 

 
(

1 2
1

1

v v v

Vs IsR
A

)

= +

= +
+

 (1.18) 

 
Let’s now look at the slightly more complicated circuit shown on Figure 7 with multiple 
dependent and independent sources. We will determine the voltage vo by using 
superposition. 

Rs

Vs1 +

-

vo

Rs

Vs2

A v1 A v2R1

+

+

-

-

v1

v2

+

+

-

-

 
Figure 7. Circuit with dependent and independent sources 
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The procedure is the same as before: leave dependent sources intact, calculate the 
contribution of each independent source acting alone. 
 
Figure 8 shows the circuit with Vs2 suppressed. The indicated output vo1 is the 
contribution of voltage source Vs1. 
 

Rs

Vs1 +

-

vo1

Rs

A v1 A v2R1

+

-

v1

v2

+

+

-

-

 
Figure 8. 

 
Since the voltage source Vs2 has been suppressed, the voltage v2 is zero. Therefore the 
current provided by the voltage controlled current source Av2 is zero. This is shown 
schematically on the circuit of Figure 9. 
 

Rs

Vs1 +

-

vo1

Rs

A v1 R1

+

-

v1

v2

+

+

-

-

 
 
 

Figure 9 
 
Therefore the voltage vo1 is 
 
 1 1 1 1vo Av R A Vs R1= =  (1.19) 
 
Next we will suppress the voltage source Vs1 as shown on the circuit of  Figure 10. 
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-
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Figure 10 

 
Now the voltage and , and the circuit reduces to the one shown on Figure 
11 

1 0v = 2v Vs= − 2

 
Rs

+

-

vo2

Rs

Vs2

A v2R1

+

-

v1

v2

+

+

-

-

 
Figure 11 

 
The voltage vo2 is now 
 
 2 2vo A Vs R1= −  (1.20) 
 
And by combining Equations (1.19) and (1.20) the voltage vo is 
 
 ( )1 2 1 2vo vo vo A Vs Vs R= + = − 1 (1.21) 
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Determining the Thevenin/Norton equivalent circuit of circuits containing 
dependent sources. 
 
For a given two-terminal port the equivalent circuit is defined exactly as in the case of 
independent sources. Measure or calculate the open-circuit voltage and the short circuit 
resistance. These two points define the i-v characteristics of the port. The characteristic 
resistance is the ratio of the open circuit voltage to the short circuit current. 
 
Given a schematic, the characteristic resistance can also be found by suppressing all 
independent sources and calculating the effective resistance between the terminals. 
NOTE, do not suppress the dependent sources. 
 
Let’s consider the circuit shown on Figure 12. We would like to calculate the voltage vo.  
 

+

-

voVs1 A2v2R1
+

-
A1v1

R2 R3

R4v1 v2

Ra

Rb

Rc

RdVs2
+

-

 
Figure 12 

We will do this by first finding the Thevenin equivalent circuit seen by resistor R4. We 
will calculate the equivalent circuit across the terminals X-Y as shown on the circuit of 
Figure 13.  
 

+

-

voVs1 A2v2R1
+

-
A1v1

R2 R3

R4v1 v2

Ra

Rb

Rc

RdVs2
+

-

X

Y
 

Figure 13 
 
 
 
 
In turn we will find vo by considering the simple voltage divider circuit shown on   
Figure 14. 
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VTh

RTh

R4
+

-

vo

 
 

Figure 14 
 
First let’s calculate the Thevenin equivalent resistance RTh seen at port X-Y (Figure 15). 
 

Vs1 A2v2R1
+

-
A1v1

R2 R3

v1 v2

Ra

Rb

Rc

RdVs2
+

-

X

Y

RTh

 
Figure 15 

 
In order to calculate RTh we will suppress all independent sources in our circuit. (Note: 
leave dependent sources intact). Figure 16 shows the circuit with the independent sources 
suppressed. 
 
 

A2v2R1A1v1

R2 R3

v1 v2

Ra

Rb

Rc

Rd

X

Y

RTh

  
 

Figure 16 
 
Note that sending both Vs1 and Vs2 to zero causes v1 and v2  to also go to zero. Therefore, 
the dependent sources also go to zero and the corresponding circuit is now shown on 
Figure 17 where the dependent sources are now zero. 
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R1

R2 R3

v1 v2

Ra

Rb

Rc

Rd

X

Y

RTh

  
Figure 17 

So we now see that the Thevenin equivalent resistance across terminals X-Y is 
 
 2 3RTh R R= +  (1.22) 
 
Next we will calculate the Thevenin voltage VTh, or the open circuit voltage, across 
terminals X-Y.  

+

-

Vs2 A2v2R1
+

-
A1v1

R2 R3

v1 v2

Ra

Rb

Rc

RdVs2
+

-

X

Y
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Figure 18 

 
We can calculate VTh by employing any of the circuit analysis methods. We will use 
superposition for this case. VTh=VTh1+VTh2 as shown on corresponding circuits of 
Figure 19. 
 

+

-

Vs1 R1
+

-
A1v1

R2 R3

v1 v2

Ra

Rb
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Figure 19 
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From Figure 19 we see that, 
 

 
1 1 1

1 1

VTh A v
RbA Vs

Ra Rb

=

=
+

 (1.23) 

 
and 
 

 
2 2 2 2

2 2 2

VTh A v R
RdA Vs R

Rc Rd

=

=
+

 (1.24) 

 
And superposition gives 
 

 
1 2

1 1 2 2 2

VTh VTh VTh
Rb RdA Vs A Vs R

Ra Rb Rc Rd

= +

= +
+ +

 (1.25) 

 
From the equivalent circuit shown on Figure 14 the desired voltage is 
 

 41 1 2 2 2
4 2

Rb Rd Rvo A Vs A Vs R
3Ra Rb Rc Rd R R R

⎛= +⎜ + + +⎝ ⎠
⎞
⎟ +

 (1.26) 
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Next, let’s analyze a circuit that contains only dependent sources. For the circuit shown 
on Figure 20 we will determine the Thevenin and Norton equivalent circuits across 
terminals a-b.  
 

R1

R2A v

+

-

v

a

b 
Figure 20 

 
The equivalent circuit for this has to be a resistance since with no input there can not be 
an output. 
 
Normally with a two terminal device we would measure the open-circuit voltage and the 
short circuit current and from these two measurements determine the i-v characteristic.  
 
For this circuit, the short-circuit current is zero since shorting the terminals forces v to 
zero. 
 
The open circuit voltage is not so obvious, one might think that the output voltage is 
undefined in the open circuit arrangement and thus any voltage would be possible. But 
let’s look more carefully. In the open circuit configuration the current through R1 is zero, 
so there is no voltage drop across R1. By KVL this requires that v be equal to the voltage 
drop across R2. However, KVL requires that the voltage drop across R2 equal Av, or that 

. This can be true in only two cases: v Av=
 

(1) in the case that A=1, or  
(2) in the general case that 0v = . 

 
Let’s consider the more general case. 
 
The circuit is still a linear, resistive circuit, and so we still need only 2 points to define the 
i-v characteristic. Since both the open circuit and short circuit measurements probe the 
same point (i=0 and v=0) we need to define another point. In order to find the second 
point we may fix either the current or the voltage at the output and determine the other. 
If we set the voltage across the terminals a-b to Vt (it does not matter what value we use), 
then we have the circuit shown on Figure 21. The current flow indicated by the arrow 
results from the application of the test voltage Vt. 
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R1

R2A Vt

Vt

i

+

-

a

b  
Figure 21 

 
By applying KVL around the loop formed by Vt, R1 and R2 we have 
 
 1iR AVt Vt 0+ − =  (1.27) 
 

 1
1
Ai Vt

R
−

=  (1.28) 

 
The i-v characteristic curve is now shown on Figure 22 
 

v

i

Vt

Vt 1-A
R1 slope= 1-A

R1

 
Figure 22 

 
And the Thevenin equivalent resistance is  

 1
1

RRTh
A

=
−

 (1.29) 

And so the Thevenin equivalent circuit is as shown on Figure 23 
 

RTh a

b

i

v
+

-

 
Figure 23 
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Similarly we could apply a test current source It and determine the resulting voltage v. 
This is shown on Figure 24. 
 

R1

R2A v

It

+

-

v

b

a

 
 

Figure 24 
 
Again applying KVL around the loop we have 
 
 1ItR Av v 0+ − =  (1.30) 
And 
 

 1
1

Rv It
A

=
−

 (1.31) 

 
Again indicating that the equivalent resistance (Thevenin/Norton) is 
 

 1
1

RRTh RN
A

= =
−

 (1.32) 
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Applications of dependent sources 
 
 
Dependent sources provide a convenient means of: 
 

1. converting between voltage and current 
 

2. changing resistance 
 
Since dependent sources often appear in the part of the circuit that we are using to make a 
measurement, they also enable the input and output characteristics of a device to be 
optimized separately. 
 
Look at the amplifier circuit shown on Figure 25. 
 

Rs

Rin

Rout

vL
+

-
Vs

+

-
vin
+

-
A vin RL

 
 

Figure 25. Amplifier circuit 
 
The circuit at the far left is a Thevenin equivalent of a voltage source. So this can stand 
in place of any voltage source regardless of the actual complexity of the physical source. 
The resistor Rin is used to measure the voltage vin  that is provided by this source. Since 
Rin is the basis of a voltage measurement we desire that Rin>>Rs. This is a general 
design criteria that we have seen before. 
 
The circuit at the right is a Thevenin equivalent voltage source driving a load. Here the 
good design characteristics require that Rout<<RL. 
 
By breaking the circuit into four components as shown on Figure 26 we will be able to 
investigate the details of each part for a deeper understanding. 
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Rs

Rin

Rout

vLVs
+

-
vin A vin RL

measurement Thevenin equivalent of
the output source

amplifier

Thevenin equivalent of
the inputsource

load

iin iout

 
 

Figure 26. Detailed breakdown of the amplifier circuit 
 
By describing the circuit in terms of the Thevenin equivalent circuits we have provided 
the most compact form possible for this application. Since it is a linear circuit, the i-v 
characteristic will provide additional insight. 

 

Vs

Vs/Rs

Slope=1/Rin

vin

iin

 

i-v characteristic of input 

 

Avin

vin/Rout
Slope=1/RL

vL

iout

i-v characteristic of output 
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Here then we see that depending on the choice of the resistors and the parameter A we 
can build an amplifier that detects a voltage and delivers power. Notice that Vs would 
often be a time varying voltage (a signal) and so the operating points would slide back 
and forth, but the slopes would not change. 
 
(We will continue with more details on dependent sources including the concept of 
feedback next class) 

6.071/22.071 Spring 2006, Chaniotakis and Cory 19 



Problems: 
 

1. Determine the Thevenin equivalent circuit across terminals X-Y. 
 

B2v2

R1

Avo

R3 R4 X

Y

R2 v2

+

-

vo

+

-

 
 

3. Obtain the Thevenin equivalent circuit seen at port a-b 
 

R1

A i2

R3 a

b

R2

i2

 
4. For the circuit below determine the current i1. 

 
R1

A i1R2

i1

Vs
+

-

 
 
 

5. Obtain the Thevenin equivalent circuit seen at port a-b 
 

Av1

R1 R2

X

Y

Vs

+    v1    -
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6. A circuit is represented by the network as shown on the following figure. Our task 
is to determine the Thevenin equivalent circuit by performing a set of 
measurements on it. 
First we connect a 1kΩ resistor across the terminals and measure a voltage of  
2Volts across X-Y.  
Next we connect a 20kΩ resistor and measure a voltage of 10Volts across X-Y. 
From these data determine the Thevenin equivalent circuit. 

 
X

Y

Linear
network

 
 

7. Determine the Thevenin equivalent circuit seen by resistor RL. 
 

R1

R2Vs

i

β i

RL
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