
 
Sinusoidal Steady State Response of Linear Circuits 

 
The circuit shown on Figure 1 is driven by a sinusoidal voltage source vs(t) of the form 
 
 ( ) cos( )s ov t v tω=  (1.1) 
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Figure 1. Series RC circuit driven by a sinusoidal forcing function 
 
 
Our goal is to determine the voltages vc(t) and the current i(t) which will completely 
characterize the “Steady State” response of the circuit. 
 
The equation that describes the behavior of this circuit is obtained by applying KVL 
around the mesh. 
 
 ( ) ( ) ( )R c sv t v t v t+ =  (1.2) 
 
Using the current voltage relationship of the resistor and the capacitor, Equation (1.2) 
becomes 
 

 ( ) ( ) cos( )c
c o

dv tRC v t v
dt

tω+ =  (1.3) 

 
Note that the coefficient RC has the unit of time. (   Ohm)(Farad) seconds→
 
Before proceeding with the solution of this differential equation let’s explore its physical 
significance. 
 
This linear circuit is driven (forced) by an independent sinusoidal source, vs(t). We may 
view its response (its effect on the circuit) as the superposition of the response with the 
source set equal to zero (source-free or natural response (vch(t)) ) and the forced response 
(vcp(t)). 
 
 ( ) ( ) ( )c ch cpv t v t v t= +  (1.4) 
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Schematically the superposition is shown on Figure 2(a) and (b). 
 

R

C

+

-

vch(t)

 
(a) 

R

Cv

+

-
s vcp(t)(t)

(b) 
 

Figure 2 
 
In mathematical language we call these two responses the homogeneous solution (vch(t)) ) 
and the particular solution (vcp(t)) of the equation that characterizes the system (Equation 
(1.3) in our case) 
 
The homogeneous solution corresponds to the differential equation 
 

 ( ) ( ) 0ch
ch

dv tRC v t
dt

+ =  (1.5) 

 
And the particular solution to the equation 
 

 
( )

( ) cos( )cp
cp o

dv t
RC v t v

dt
tω+ =  (1.6) 

 
The homogeneous solution (or the natural response of the system) has the form 
 

 ( ) expch
tv t B

RC
−⎡ ⎤= ⎢ ⎥⎣ ⎦

 (1.7) 

 
The particular solution (or the forced response of the system) is the cosine function of 
amplitude A, frequency ω, and phase φ.  
 
 ( ) cos( )cpv t A tω φ= +  (1.8) 
 
And so the general form of the system response is 
 

 ( ) cos( ) expc
tv t A t B

RC
ω φ −⎡ ⎤= + + ⎢ ⎥⎣ ⎦

 (1.9) 
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At this time let’s recall the problem statement which says that we are interested in 
obtaining the Steady State response of the system. This is equivalent to saying that the 
source vs(t) was connected to the system long time ago and all transient phenomena are 
gone. In order to be more precise, if the time t  then the exponential term in 
Equation (1.9) would go to zero. In this case the observable and thus the important 
response of the system is the Steady State response which is given by 

RC

 
 ( ) cos( )cv t A tω φ= +  (1.10) 
 
We may now proceed to determine the details of the solution by calculating the amplitude 
A and the phase φ. To do this we substitute the form of the solution (Equation (1.10) ) 
into the differential Equation (1.3). 
Before we make that substitution lets use the trigonometric identities to expand Equation 
(1.10). 
 

 
( ) cos( )

cos cos( ) sin sin( )
cv t A t

A t A t
ω φ
φ ω φ

= +
= − ω

 (1.11) 

 
And the corresponding derivative 
 

 cos sin( ) sin cos( )cdv A t A t
dt

ω φ ω ω φ ω= − −  (1.12) 

 
 
Substituting Equations (1.11) and (1.12) into Equation (1.3) we have 
 
 

 
[ ] 0

cos sin( ) sin cos( )
1 cos cos( ) sin sin( ) cos( )

A t A t
vA t A t t

RC RC

ω φ ω ω φ ω

φ ω φ ω

− − +

− = ω
 (1.13) 

 
 
Collecting the coefficients of cos( )tω  and sin( )tω we have the following equations for 
the unknowns A and φ. 
 

 cos sin 0AA
RC

ω φ φ− − =  (1.14) 

 

 0sin cos vAA
RC R

ω φ φ− + =
C

 (1.15) 

 
These equations are independent and thus they may be solved simultaneously for A and 
φ. 
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From Equation (1.14) we obtain the phase 
 
 ( )arctan RCφ ω= −  (1.16) 
and A becomes 
 

 
cos sin

ovA
RCφ ω φ

=
−

 (1.17) 

 
Therefore, the Steady State response of the system is  
 

 (( ) cos
cos sin

o
c

vv t t
RC

)ω φ
φ ω φ

=
−

+  (1.18) 

 
where  ( )arctan RCφ ω= −
 
Figure 3 shows a plot of the phase and the amplitude ratio  as a function of the 
dimensionless parameter 

/A vo
RCω . Observe the frequency selectivity of this system. It 

passes “low” frequencies while it attenuates “higher” frequencies. 
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Figure 3 
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The voltage across the resistor, , may also be determined by calculating the current 
i(t) and multiplying it by R. 

( )Rv t

 

 ( )( ) cos
cos sin 2

c odv t v Ci t C t
dt RC

ω πω φ
φ ω φ

⎛= = + +⎜− ⎝ ⎠
⎞
⎟  (1.19) 

 

 ( ) ( ) cos
cos sin 2

o
R

v RCv t i t R t
RC

ω πω φ
φ ω φ

⎛= = + +⎜− ⎝ ⎠
⎞
⎟  (1.20) 

 
Figure 4 shows the plot of amplitude ratio  as a function of the dimensionless 
parameter

/R ov v
RCω . Here we see the complementary behavior to that shown on Figure 3. 

Observe again the frequency selectivity of this system. If the output is thus taken across 
the resistor it passes “high” frequencies while it attenuates “lower” frequencies. 
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Figure 4.  
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Now let’s look at a few frequencies of interest 
 

1. For 0ω =  (dc signal) the phase 0φ =  and the amplitude oA v= . The voltage 
across the capacitor is constant. 
 
No current flows in the circuit 
 
The capacitor behaves as an open circuit. 
 
The circuit equivalent when 0ω =  is shown on Figure 5. 
 

R

Cvo

 

≡  

R

Cvo

 
 

Figure 5 
 
 

 
2. For 1RCω =  

 

The phase  and the amplitude 045φ = −
1/ 2 1/ 2 2

o ov vA = =
+

 

 

R

C ov
cos( )ov tω  

 
Here current is flowing and thus some power is dissipate
stores some energy. 
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3. For 1RCω  
 

The phase  and the amplitude 090φ = − 0
0 ( 1)

o ov vA
RC RCω ω

= = →
− −

 

 
As ω increases more power is dissipated in the resistor R. 
 
When ω→∞  the capacitor acts as a short circuit and all power is dissipated in R. 
 
The circuit equivalent when ω→∞  is shown on Figure 6. 
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Figure 6 
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Now let’s consider the RL circuit 
 

R

Lv

+

-

i(t)

s vL(t)(t)

 
 
 
We would like to characterize this circuit by obtaining the current i(t) and the voltage 
vL(t). Apply KVL around the mesh 
 

 ( )( ) ( )s
di tv t i t R L
dt

= +  (1.21) 

 
With vs(t) of the form ( ) cos( )s ov t v tω= , Equation (1.21) becomes 
 

 0( ) ( ) cos( )vdi t R i t t
dt L L

ω+ =  (1.22) 

 

The coefficient L
R

 is a time constant. Henry seconds
Ohm

→  

 
Here again we are interested in the behavior of the system for times that are long 

compared to the time constant L
R

. In this scenario the only contribution to the solution is 

again the one forced by the sinusoidal source voltage ( ) cos( )s ov t v tω= . 
 
And the form of the forced response solution is 
 

 
( ) cos( )

cos cos( ) sin sin( )
i t A t

A t A t
ω φ
φ ω φ

= +
= − ω

 (1.23) 

 

 ( ) cos sin( ) sin cos( )di t A t A t
dt

ω φ ω ω φ ω= − −  (1.24) 

 
Substituting back into the differential equation (1.22) we get 
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[ ] 0

cos sin( ) sin cos( )

cos cos( ) sin sin( ) cos( )

A t A t
vR A t A t

L L
t

ω φ ω ω φ ω

φ ω φ ω

− − +

− = ω
 (1.25) 

 
We now separate the cosine and sine functional forms of the solution since they are 
independent contributions. 
 
The coefficients of the sin( )tω  terms are: 
 

 cos sin 0RAA
L

ω φ φ− − =  (1.26) 

 
And the coefficients of the cos( )tω  terms are: 
 

 0sin cos vRAA
L L

ω φ φ− + =  (1.27) 

 
Equation (1.26) gives us the expression for the phase φ.  
 

 1tan L
R
ωφ − ⎛= −⎜

⎝ ⎠
⎞
⎟  (1.28) 

 
And the amplitude A becomes 
 

 /

cos sin
ov RA L

R
ωφ φ

=
−

 (1.29) 

 
And the solution for i(t) becomes 
 

 (/( ) cos
cos sin

ov Ri t tL
R

)ω φ
φ ω φ

=
−

+  (1.30) 

Where the phase 1tan L
R
ωφ − ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

 
Figure 7 (a) and (b) show the plots of the phase and the amplitude as a function of the 

parameter L
R
ω .  
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Figure 7 
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Let’s look at a few important frequencies as before 
 

1. For 0ω =  (dc signal) the phase 0φ =  and the amplitude /oA v R= .  
 
The voltage across the inductor is zero and the current flowing in the circuit is 

. 
 
All power is dissipated in R. 
 
A magnetic field is generated in the inductor but it does not change over time (no 
change in the magnetic field no voltage) 
 
The inductor behaves as a short circuit as indicated on Figure 8. 
 

/ov R

R

Lvo

 

≡  

R

Lvo

vo /R

 
 

Figure 8 
 
 

2. For / 1L Rω =  
 

The phase  and the amplitude of the current is045φ = −
/ 1

1/ 2 1/ 2 2
o ov R vA

R
= =

+
 

 

R

L

 

1 cos( / 4)
2

ovi t
R

ω π= −  cos( )ov tω  

 
Here current is flowing and thus some power is dissipated in R. Also the inductor 
stores some energy. 
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3. For / 1L Rω  
 

The phase  and the amplitude 090φ = −
/ / 0

0 ( 1)
o ov R v RA L L
R R
ω ω= = →

− −
 

 
As ω increases the current decreases and as ω→∞  the inductor acts as an open 
circuit (see Figure 9). 
 

R

L

 

 
ω→∞⎯⎯⎯→

R

L

 

cos( )ov tω  cos( )ov tω  

 
Figure 9 
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Using the complex forcing function 
 
Our goal is to be able to analyze RC and RL circuits without having to every time employ 
the differential equation method, which can be cumbersome. If we draw upon our current 
understanding of RC and RL networks and the fact that they represent linear systems we 
will be able to considerably simplify the mathematical steps involved in the computation. 
This simplification will require the use of fundamental complex arithmetic and will in the 
end reduce the differential equations into simple algebraic equations. (indeed a 
simplification using complex numbers!) 
 
The linearity of the system implies that if we use a forcing function of the form 

(cosov t )ω θ+  then the output will have the same frequency but with a different phase 

(cosA t )ω φ+ . Also if we were to scale the source by a factor k then the output will be 
scaled by the same factor. Figure 10 graphically demonstrates these two statements. 
 
 
 

Linear
syestem

 

Linear
syestem

 

cos( )A tω φ+  cos( )k A tω φ+  cos( )ov tω θ+  cos( )k A tω θ+  

 
 

Figure 10 
 
If the factor k is an imaginary number like 1j = − , then linearity still holds as we 
graphically demonstrate on Figure 11. 
 

Linear
syestem

 

sin( )j A tω φ+  sin( )oj v tω θ+  

 
Figure 11 

 
 
Therefore by superposition a forcing function of the form 
 
 cos( ) sin( )o ov t jv tω ω+  (1.31) 
 
Will produce a response of the form 
 
 cos( ) sin( )A t jA tω φ ω φ+ + +  (1.32) 
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By using Euler’s identity Equations (1.31) and (1.32), the forcing function and the 
corresponding response, become respectively 
 
 ( )j t

ov e ω  (1.33) 
and  
 
 ( )j tAe ω φ+  (1.34) 
 
Therefore we could employ the complex form of the forcing function, proceed with the 
development of the solution and then extract the desirable part of the response depending 
on whether the forcing function was a cosine or a sine function. 
 
 
So what is the advantage of this method? 

1. Very easy to perform algebra with the exponentials 
2. Reduces differential equations to algebraic equations. 

 
Let’s explore this method by considering again the RL circuit analyzed previously and 
shown again on Figure 12. The source has the form ( ) cos( )s ov t v tω= . 
 

R

Lv

+

-

i(t)

s vL(t)(t)

 

cos( )ov tω  

 
Figure 12 

 
Since cos( )ov tω  is the real part of  j t

ov e ω  we will proceed with the analysis and at the 
end we will simply extract the real part of the solution. 
 
The equation characterizing the system is 
 

 ( ) ( ) svdi t R i t
dt L L

+ =  (1.35) 

If we use the complex source 
 
 j t

ov e ω  (1.36) 
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Then the corresponding complex response is 
 
 (j tAe )ω φ+  (1.37) 
 
Equation (1.35) becomes 
 

 j j ovRj Ae A e
L L

φ φω + =  (1.38) 

 
which upon simplification becomes 
 
 ( )j

oAe R j L vφ ω+ =  (1.39) 
 
Continue with more simplification we obtain  
 

 /
1 /

j ov RAe
j L R

φ

ω
=

+
 (1.40) 

 
And by writing the complex number in polar form we have 
 

 
1tan

2 2

2

/

1

Lj
Rj ov RAe e

L
R

ω
φ

ω

−⎛ ⎞⎛ ⎞−⎜ ⎜ ⎟
⎝ ⎠⎝=

+

⎟
⎠  (1.41) 

 
 
Where the amplitude of the current is 
 

 
2 2

2

/

1

ov RA
L

R
ω

=

+

 (1.42) 

 
And the phase is 
 

 1tan L
R
ωφ − ⎛= −⎜

⎝ ⎠
⎞
⎟  (1.43) 

 
The complete complex response of the system is 
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1tan

2 2

2

/

1

Lj
R j tov R e

L
R

ω

e ω

ω

−⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+

 (1.44) 

 
Since our forcing source was the cosine function, all we need to do is extract the real part 
of the function given by Equation (1.44) which is 
 

 1

2 2

2

/( ) cos tan
1

ov R Li t t
RL

R

ωω
ω

−⎛ ⎛= + ⎜⎜ ⎝ ⎠⎝ ⎠
+

⎞⎞− ⎟⎟  (1.45) 

 
 
Which is the same as Equation (1.30). 
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