
The RLC Circuit. Transient Response 
 
 
Series RLC circuit 
 
The circuit shown on Figure 1 is called the series RLC circuit. We will analyze this 
circuit in order to determine its transient characteristics once the switch S is closed. 
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Figure 1 

 
The equation that describes the response of the system is obtained by applying KVL 
around the mesh 
 
 vR vL vc Vs+ + =  (1.1) 
 
The current flowing in the circuit is 
 

 dvci C
dt

=  (1.2) 

 
And thus the voltages vR and vL are given by 
 

 dvcvR iR RC
dt

= =  (1.3) 

 

 
2

2

di d vcvL L LC
dt dt

= =  (1.4) 

 
Substituting Equations (1.3) and (1.4) into Equation (1.1) we obtain 
 

 
2

2

1 1d vc R dvc vc Vs
dt L dt LC LC

+ + =  (1.5) 

 
The solution to equation (1.5) is the linear combination of the homogeneous and the 
particular solution  p hvc vc vc= +
 
The particular solution is 
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 pvc Vs=  (1.6) 
And the homogeneous solution satisfies the equation  
 

 
2

2

1 0h h
h

d vc dvcR vc
dt L dt LC

+ + =  (1.7) 

 
 
Assuming a homogeneous solution is of the form stAe  and by substituting into Equation 
(1.7) we obtain the characteristic equation 
 

 2 1 0Rs s
L LC

+ + =  (1.8) 

 
 
By defining 
 

 : Damping rate
2
R
L

α =  (1.9) 

And 
 

 1 : Natural frequency
LCοω =  (1.10) 

 
The characteristic equation becomes 
 
 
 2 22s s οα ω 0+ + =  (1.11) 
 
The roots of the characteristic equation are 
 
 21s 2

οα α ω= − + −  (1.12) 
 
 22s 2

οα α ω= − − −  (1.13) 
 
And the homogeneous solution becomes 
 
 1

1 2
2s t

hvc A e A e= + s t

2

 (1.14) 
 
The total solution now becomes 
 
 1

1 2
s tvc Vs A e A e= + + s t  (1.15) 
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The parameters A1 and A2 are constants and can be determined by the application of the 

initial conditions of the system ( 0vc t )=  and ( 0)dvc t
dt
= . 

 
The value of the term 2 2

οα ω−  determines the behavior of the response. Three types of 
responses are possible: 
 

1. οα ω=  then  s1 and s2 are equal and real numbers: no oscillatory behavior 
Critically Damped System 
 

2. οα ω> . Here s1 and s2 are real numbers but are unequal: no oscillatory behavior 
Over Damped System 

1 2
1 2

s t svc Vs A e A e= + + t  
 

3. οα ω< . 2 2 2jο ο
2α ω ω− = −α  In this case the roots s1 and s2 are complex 

numbers: 2 2 21 , 2s j s jο
2

οα ω α α ω α= − + − = − − − . System exhibits 
oscillatory behavior 
Under Damped System 

 
Important observations for the series RLC circuit. 
 

• As the resistance increases the value of α increases and the system is driven 
towards an over damped response. 
 

• The frequency 1
LCοω =  (rad/sec) is called the natural frequency of the system 

or the resonant frequency. 
 

• The parameter 
2
R
L

α =   is called the damping rate and its value in relation to οω  

determines the behavior of the response 
o οα ω= : Critically Damped 
o οα ω> : Over Damped 
o οα ω< : Under Damped 

 

• The quantity L
C

 has units of resistance 
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Figure 2 shows the response of the series RLC circuit with L=47mH, C=47nF and for 
three different values of R corresponding to the under damped, critically damped and 
over damped case. We will construct this circuit in the laboratory and examine its 
behavior in more detail. 
 

 
(a) Under Damped. R=500Ω 

 

 
(b) Critically Damped. R=2000 Ω 

 

 
(c) Over Damped. R=4000 Ω 

 
Figure 2 
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The LC circuit. 
 
In the limit  the RLC circuit reduces to the lossless LC circuit shown on Figure 3. 0R →
 

S

C

L

vc
+

-

+     vL      -

 
 

Figure 3 
 
The equation that describes the response of this circuit is 
 

 
2

2

1 0d vc vc
dt LC

+ =  (1.16) 

 
Assuming a solution of the form stAe  the characteristic equation is 
 
 2 2 0s οω+ =  (1.17) 

Where 1
LCοω =  

 
The two roots are 
 
 1s j οω= +  (1.18) 
 
 2s j οω= −  (1.19) 
  
 
And the solution is a linear combination of  11 s tA e  and 22 s tA e  
 
 ( ) 1 2oj t j tvc t A e A e οω ω−= +  (1.20) 
 
By using Euler’s relation Equation (1.20) may also be written as 
 
 ( ) 1cos( ) 2sin(vc t B t B tο )οω ω= +  (1.21) 
 
The constants A1, A2 or B1, B2 are determined from the initial conditions of the system. 
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For  and for ( 0)vc t Vo= =
( 0) 0dvc t
dt
=

=  (no current flowing in the circuit initially) we 

have from Equation (1.20) 
 
 1 2A A Vo+ =  (1.22) 
And 
 
 1 2 0o oj A j Aω ω− =  (1.23) 
 
Which give 
 

 1 2
2

VoA A= =  (1.24) 

And the solution becomes 
 

 ( )( )
2

cos( )

oj t j t

o

Vovc t e e

Vo t

οω ω

ω

−= +

=
 (1.25) 

The current flowing in the circuit is 
 

 
sin( )

dvci C
dt

CVo tο οω ω

=

= −
 (1.26) 

 
And the voltage across the inductor is easily determined from KVL or from the element 

relation of the inductor divL L
dt

=  

 

 
cos( )o

vL vc
Vo tω

= −
= −

 (1.27) 

 
Figure 4 shows the plots of . Note the 180 degree phase difference 
between vc(t) and vL(t) and the 90 degree phase difference between vL(t) and i(t). 

( ), ( ), ( )vc t vL t and i t

 
Figure 5 shows a plot of the energy in the capacitor and the inductor as a function of 
time. Note that the energy is exchanged between the capacitor and the inductor in this 
lossless system 
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(a) Voltage across the capacitor 

 
(b) Voltage across the inductor 

 
(c) Current flowing in the circuit 

 
Figure 4 
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(a) Energy stored in the capacitor 

 

 
(b) Energy stored in the inductor 

 
Figure 5 
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Parallel RLC Circuit 
 
The RLC circuit shown on Figure 6 is called the parallel RLC circuit. It is driven by the 
DC current source Is whose time evolution is shown on Figure 7. 
 
 

Is CLR

iL(t)

v
+

-

iR(t) iC(t)

 
Figure 6 

 
 

t

Is

0  
Figure 7 

 
 
Our goal is to determine the current iL(t) and the voltage v(t) for t>0. 
 
We proceed as follows: 
 

1. Establish the initial conditions for the system 
2. Determine the equation that describes the system characteristics 
3. Solve the equation 
4. Distinguish the operating characteristics as a function of the circuit element 

parameters. 
 
 
Since the current Is was zero prior to t=0 the initial conditions are: 
 

 
( 0)

Initial Conditions:
( 0) 0

iL t
v t

0= =⎧
⎨ = =⎩

 (1.28) 

 
 
By applying KCl at the indicated node we obtain 
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 Is iR iL iC= + +  (1.29) 
 
The voltage across the elements is given by 
 

 d iLv L
dt

=  (1.30) 

 
And the currents iR and iC are 
 

 v L d iLiR
R R dt

= =  (1.31) 

 

 
2

2

dv d iLiC C LC
dt dt

= =  (1.32) 

 
Combining Equations (1.29), (1.31), and (1.32) we obtain 
 

 
2

2

1 1 1d iL d iL iL Is
dt RC dt LC LC

+ + =  (1.33) 

 
 
The solution to equation (1.33) is a superposition of the particular and the homogeneous 
solutions. 
 
 ( ) ( ) ( )p hiL t iL t iL t= +  (1.34) 
 
The particular solution is 
 
 ( )piL t Is=  (1.35) 
 
 
The homogeneous solution satisfies the equation  
 

 
2

2

1 1 0h h
h

d iL d iL iL
dt RC dt LC

+ + =  (1.36) 

 
By assuming a solution of the form stAe  we obtain the characteristic equation 
 
 

 2 1 1 0s s
RC LC

+ + =  (1.37) 

 
 
Be defining the following parameters 
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 1 : Resonant frequency
LCοω ≡  (1.38) 

 
And 
 

 1 : Damping rate
2RC

α =  (1.39) 

 
The characteristic equation becomes 
 
 2 22s s οα ω 0+ + =  (1.40) 
 
The two roots of this equation are 
 
 
 21s 2

οα α ω= − + −  (1.41) 
 
 22s 2

οα α ω= − − −  (1.42) 
 
The homogeneous solution is a linear combination of  1s te  and 2s te  
 
 1

1 2( ) 2s t
hiL t A e A e= + s t

2

 (1.43) 
 
And the general solution becomes 
 
 1

1 2( ) s tiL t Is A e A e= + + s t  (1.44) 
 
The constants  and  may be determined by using the initial conditions. 1A 2A
 
Let’s now proceed by looking at the physical significance of the parameters α  and οω . 
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The form of the roots s1 and s2 depend on the values of α  and οω . The following three 
cases are possible. 
 

1. οα ω= : Critically Damped System. 
 s1 and s2 are equal and real numbers: no oscillatory behavior 
 
 

2. οα ω> : Over Damped System 
Here s1 and s2 are real numbers but are unequal: no oscillatory behavior 
 
 

3. οα ω< : Under Damped System 
2 2 2jο ο

2α ω ω− = −α  In this case the roots s1 and s2 are complex numbers: 
2 2 21 , 2s j s jο

2
οα ω α α ω α= − + − = − − − . System exhibits oscillatory behavior 

 
 
Let’s investigate the under damped case, οα ω< , in more detail. 
 
For οα ω<  , 2 2 2 2

djο ο jα ω ω α− = − ≡ ω  the solution is 
 
 ( )1 2( ) dj t j tt

Decaying
Oscillatory

iL t Is e A e A eωα −−= + + dω  (1.45) 

 
By using Euler’s identity cos sindj t

de t jω
dtω ω± = ± , the solution becomes 

 
 ( )1 2( ) cos sint

d
Decaying

Oscillatory

iL t Is e K t K tα
dω ω−= + +  (1.46) 

 
Now we can determine the constants  and  by applying the initial conditions 1K 2K
 

 
1

1

( 0) 0 0iL t Is K

K Is

= = ⇒ + =

⇒ = −
 (1.47) 

 

 
1 2

0

2

0 (0 d
t

d

diL K K
dt

K Is

α ω

α
ω

=

) 0= ⇒ − + + =

−
⇒ =

 (1.48) 

 
And the solution is 
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 ( ) 1 cos sint
d

Decaying d

Oscillatory

iL t Is e t tα αω ω
ω

−
d

⎡ ⎤
⎢ ⎥⎛ ⎞
⎢ ⎥= − +⎜ ⎟
⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

 (1.49) 

 
 

By using the trigonometric identity 2 2 1 2
1 2 1 2

1

cos sin cos tan BB t B t B B t
B

−⎛ ⎞
+ = + −⎜ ⎟

⎝ ⎠
 the 

solution becomes 
 

 1( ) cos tant
d

d d

iL t Is Is e tαοω αω
ω ω

− ⎛ ⎞
= − −⎜

⎝ ⎠
−

⎟  (1.50) 

 
Recall that 2

d ο
2ω ω α≡ −  and thus dω  is always smaller than oω  

 
 
Let’s now investigate the important limiting case: 
 
As  , R →∞ 0α ω<<  

2 2
d ο οω ω α ω≡ − ≈  and 1tan 0

ο

α
ω

− ≈ , 1te α− ≈  

And the solution reduces to  ( ) cos oiL t Is Is tω= −  which corresponds to the response of 
the circuit 

Is CL

 
 
 

 
 

The plot of iL(t) is shown on Figure 8 for C=47nF, L=47mH, Is=5A and for R=20kΩ and 
8kΩ, The dotted lines indicate the decaying characteristics of the response. For 
convenience and easy visualization the plot is presented in the normalized time /tοω π . 
Note that the peak current through the inductor is greater than the supply current Is. 
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(a) For R=8kΩ 

 
(b) For R=20kΩ 

Figure 8.  
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(a) R=20kΩ 
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(b) R=8kΩ 

Figure 9 
 
The energy stored in the inductor and the capacitor is shown on Figure 10.  
 
 
 

 
Figure 10. Energy as a function of time 

 
 
Figure 11 shows the plot of the response corresponding to the case where 0α ω<< . This 
shows the persistent oscillation for the current iL(t) with frequency 0ω . 
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Figure 11 
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The Critically Damped Response. 
 
When οα ω=  the two roots of the characteristic equation are equal s1=s2=s. And our 
assumed solution becomes 
 

 1 2

3

( ) st s

st

iL t A e A e

A e

= +

=

t

 (1.51) 

 
Now we have only one arbitrary constant. This is a problem for our second order system 
since our two initial conditions can not be satisfied. 
The problem stems from an incorrect assumption for the solution for this special case. 
For οα ω=  the differential equation of the homogeneous problem becomes 
 

 
2

2
2 2h h

h
d iL d iL iL
dt dt

α α 0+ + =  (1.52) 

 
The solution of this equation is1

 
 1 2( ) tiL t A te A e tα α− −= +  (1.53) 
 
Which is a linear combination of the exponential term and an exponential term multiplied 

by t.

                                                 
1 The equation 

2
2

2 2d i d i i
dt dt

α α+ + = 0  may be rewritten as 0d di dii i
dt dt dt

α α α⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, by 

defining 
di i
dt

ξ α= +  the equation becomes 0d
dt
ξ αξ+ =  whose solution is 1

tK e αξ −= .  Therefore 

1
t tdie e i

dt
α α α+ = K   which may be written as 1( )td e i K

dt
α = . By integration we obtain the solution 

1 2
t ti K te K eα α− −= +  
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Summary of RLC transient response 
 

 Series Parallel 

οω  
1
LCοω =  1

LCοω =  

α  
2
R
L

α =  1
2RC

α =  

 
Critically 
Damped 

 

οα ω=  
Response: 1 2

t tA te A eα α− −+  

Under 
Damped 

 
οα ω<  

Response: ( )1 2cos sint
d d

Decaying
Oscillatory

e K t Kα tω ω− +  

Where 2 2
d οω ω α≡ −  

 

Over 
Damped 

 
οα ω>  

Response: 1 2
1 2

s t s tA e A e+  

Where 2 21,2s οα α ω= − ± −  
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Problem 
 
 
For the circuit below, the switch S1 has been closed for a long time while switch S2 is 
open. Now switch S1 is opened and then at time t=0 switch S2 is closed. 
Determine the current i(t) as indicated. 
 
 
 
 

R1 R2

C L

S1 S2

Vs
i(t)
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