The RLC Circuit. Transient Response

Series RLC circuit

The circuit shown on Figure 1 is called the series RLC circuit. We will analyze this
circuit in order to determine its transient characteristics once the switch S is closed.

S + vR - + L -
_o/o AN Ia'a'a's!
R L
L +
Vs — C=— vc
Figure 1

The equation that describes the response of the system is obtained by applying KVL
around the mesh

VR+VvL +ve =Vs (1.1)
The current flowing in the circuit is
dve
i=C— 1.2
5 (1.2)

And thus the voltages vR and vL are given by

VR = iR = RCE (1.3)

dt

. 2
vL:Lﬂchde (1.4)

dt dt

Substituting Equations (1.3) and (1.4) into Equation (1.1) we obtain
2

dvc_i_R@ 1 vc:LVs (1.5)

2 s t—
dt L dt LC LC

The solution to equation (1.5) is the linear combination of the homogeneous and the
particular solution ve =ve, +vc,

The particular solution is
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ve, =Vs (1.6)
And the homogeneous solution satisfies the equation
d*ve, Rdvc, 1
+ _—

> +—c,
dt L dt LC

=0 (1.7)

Assuming a homogeneous solution is of the form A4e* and by substituting into Equation
(1.7) we obtain the characteristic equation

sz+£s+L:0 (1.8)
L LC
By defining
a—i' Damping rate (1.9)
oL ping :
And
o, = L. Natural frequency (1.10)
©JLc '
The characteristic equation becomes
s’+2as+w’ =0 (1.11)

The roots of the characteristic equation are

sl=—a++Ja’ -’ (1.12)

s2=—a—a'—w (1.13)

H

And the homogeneous solution becomes
ve, = A e’ + 4,e’” (1.14)
The total solution now becomes

ve=Vs+ Ae’" + A,e’” (1.15)
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The parameters Al and A2 are constants and can be determined by the application of the

initial conditions of the system ve(¢ =0) and

dve(t =0)
da

The value of the term /&’ —@’ determines the behavior of the response. Three types of

responses are possible:

1.

a =m, then s/ and s2 are equal and real numbers: no oscillatory behavior
Critically Damped System

a > w, . Here s1 and s2 are real numbers but are unequal: no oscillatory behavior

Over Damped System
ve=Vs+ Ae™ + A,e’”

a<o,. \Ja’—a) = j\J&’ —a’ In this case the roots s1 and s2 are complex
numbers: sl=-a+ j\J@! —a’, s2=-a— jJo! —a’ . System exhibits

oscillatory behavior
Under Damped System

Important observations for the series RLC circuit.

As the resistance increases the value of a increases and the system is driven
towards an over damped response.

1
The frequency o, = (rad/sec) is called the natural frequency of the system
vLC

or the resonant frequency.

The parameter o = % is called the damping rate and its value in relation to @,

determines the behavior of the response

0 a=w,: Critically Damped
0 a>w,: Over Damped
0 a<w,: Under Damped

. L . .
The quantity \/g has units of resistance
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Figure 2 shows the response of the series RLC circuit with L=47mH, C=47nF and for
three different values of R corresponding to the under damped, critically damped and
over damped case. We will construct this circuit in the laboratory and examine its
behavior in more detail.

100

6.7

3.3

0

v (Weolts)

233

6T

-10.0

0 20000 40000 60000 £00.0p 108
t {zec)

(a) Under Damped. R=500Q

100

6.7

3.3

v (Welts)

233

6.7

-10.0

0 200.0p 400 0p 600 0p £00.0p 1.0m
t {zec)

(b) Critically Damped. R=2000 Q

100

6.7

3.3

v (Volts)

RO

6.7 7

-10.0

0 20000 40004 6000 2000 10m
t {zec)

(c) Over Damped. R=4000 Q

Figure 2
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The LC circuit.

In the limit R — 0 the RLC circuit reduces to the lossless LC circuit shown on Figure 3.

S + vL -
— oo NONN,
L
_l’_
C— vc
Figure 3

The equation that describes the response of this circuit is

s+ =0
Where o, = L
© JLe
The two roots are
sl=+jw,
s2=—jw,

And the solution is a linear combination of Ale*" and A2¢**
ve(t) = Ale’™ + A2e™/
By using Euler’s relation Equation (1.20) may also be written as

ve(t) = Blcos(w,t) + B2sin(w,t)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

The constants A1, A2 or Bl, B2 are determined from the initial conditions of the system.
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dve(t =0)

For ve(t =0)=Vo and for 7
t

=0 (no current flowing in the circuit initially) we

have from Equation (1.20)

Al+A2=Vo (1.22)
And
jo, Al—jo,A2=0 (1.23)
Which give
AI:AZ:% (1.24)

And the solution becomes

ve(t) = %(ejw“’ +e /! )

(1.25)
=Vocos(w,t)
The current flowing in the circuit is
- e
dt (1.26)
=—CVow, sin(w,t)

And the voltage across the inductor is easily determined from KVL or from the element

relation of the inductor vL = L%
t

vL =—vc 127
=—Vocos(w,t) (1.27)

Figure 4 shows the plots of ve(z), vL(t), and i(t) . Note the 180 degree phase difference
between ve(?) and vL(?) and the 90 degree phase difference between vL(?) and i(z).

Figure 5 shows a plot of the energy in the capacitor and the inductor as a function of

time. Note that the energy is exchanged between the capacitor and the inductor in this
lossless system
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Parallel RLC Circuit

The RLC circuit shown on Figure 6 is called the parallel RLC circuit. It is driven by the
DC current source Is whose time evolution is shown on Figure 7.

lma) lma) ycm
_l_
Is (T) R § L g C=— V_
Figure 6
A
Is
0 [
Figure 7

Our goal is to determine the current iL(?) and the voltage v(?) for >0.

We proceed as follows:

Establish the initial conditions for the system
Determine the equation that describes the system characteristics

Solve the equation
Distinguish the operating characteristics as a function of the circuit element

parameters.

e

Since the current Is was zero prior to =0 the initial conditions are:

iL(t=0)=0

"= 0)—0 (1.28)

Initial Conditions:{

By applying KCI at the indicated node we obtain
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Is = iR+iL +iC (1.29)

The voltage across the elements is given by

V= Ld—lL (1.30)
dt
And the currents iR and iC are
iR=Y - LdiL (1.31)
R R dt
2.
ic=c®_1cd ’ZL (1.32)
dt dt
Combining Equations (1.29), (1.31), and (1.32) we obtain
2. .
dib, Ldib, 1y Ly (133)

>+
dt© RC dt LC LC

The solution to equation (1.33) is a superposition of the particular and the homogeneous
solutions.

iL(¢) =iL,(t)+iL,(t) (1.34)
The particular solution is

iL,(1)=Is (1.35)

The homogeneous solution satisfies the equation

2. .
ai, LA, 1o (1.36)
d* " RC di  LC

By assuming a solution of the form Ae*

we obtain the characteristic equation

S +—s+——=0 1.37
7 (1.37)

Be defining the following parameters
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1
o, =——: Resonant frequency (1.38)
° JLC
And
1 .
a= %: Damping rate (1.39)
The characteristic equation becomes
s’+2as+w. =0 (1.40)
The two roots of this equation are
sl=—a+ o’ -’ (1.41)
s2=—a—~Ja* — &’ (1.42)
The homogeneous solution is a linear combination of e and e**
iL,(t)= A’ + 4,e™ (1.43)
And the general solution becomes
iL(t)=Is+ 4e"" + A4,e"™ (1.44)

The constants 4, and 4, may be determined by using the initial conditions.

Let’s now proceed by looking at the physical significance of the parameters & and o, .
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The form of the roots s1 and s2 depend on the values of & and @, . The following three
cases are possible.

1. a=w,: Critically Damped System.
s/ and s2 are equal and real numbers: no oscillatory behavior

2. a>aw,: Over Damped System
Here s/ and s2 are real numbers but are unequal: no oscillatory behavior

3. a<wm,: Under Damped System

\/ al-w’ = j\/ @’ —a’ In this case the roots s1 and s2 are complex numbers:

sl=—a+ j\J&! —a’, s2=—a— j\J@' —a’ . System exhibits oscillatory behavior

Let’s investigate the under damped case, o < @, , in more detail.

For a <, , \/az -’ :j\/a)o2 —a’ = jo, the solution is

iL(t)=Is+ ¢ (A4e™ + ™) (1.45)
Decaying -
Oscillatory

+jo,t

By using Euler’s identity e”/“' = cos @w,¢  jsin @,t, the solution becomes

. —at .
iL@)=1Is+ ¢ * (K, cosw,t + K, sin ,t) (1.46)
Decaying Oscillatory

Now we can determine the constants K, and K, by applying the initial conditions

iL(t=0)=0=>Is+K, =0

1.47
=K, =—Is ( )

diL

—| =0=>-aK +(0+K,0,)=0
dt |-

(1.48)

—O
=K, =—1Is
Wy

And the solution is
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iL(t)y=1Is|1- ¢ (cosa)dtJrisina)dtJ (1.49)

Decaying a)d

Oscillatory

. . . . . 4B
By using the trigonometric identity B, cost + B, sint =B} + B; cos [t —tan”' —ZJ the
1
solution becomes

iL(t) = Is — Is 22

2F

e cos[a)a,t—tan‘1 i} (1.50)
@,

Recall that @, = /@’ —a’ and thus @, is always smaller than @,

Let’s now investigate the important limiting case:

As R—> o, a<<o,

2 L a .
w, =0} —a’ @, and tan”' — =0, e ~1

o

And the solution reduces to iL(¢) = Is — Is cos @,t which corresponds to the response of
the circuit

Is CD L C=—

The plot of iL(?) is shown on Figure 8 for C=47nF, L=47mH, Is=5A and for R=20kQ and
8kQ, The dotted lines indicate the decaying characteristics of the response. For
convenience and easy visualization the plot is presented in the normalized time @t/ 7.

Note that the peak current through the inductor is greater than the supply current Is.
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The energy stored in the inductor and the capacitor is shown on Figure 10.
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Figure 10. Energy as a function of time

Figure 11 shows the plot of the response corresponding to the case where a << @,. This

shows the persistent oscillation for the current iL(z) with frequency o, .
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The Critically Damped Response.

When a = @, the two roots of the characteristic equation are equal s/=s2=s. And our
assumed solution becomes

iL(t) = Ae" + 4,e”

(1.51)
— A3 est
Now we have only one arbitrary constant. This is a problem for our second order system
since our two initial conditions can not be satisfied.
The problem stems from an incorrect assumption for the solution for this special case.
For a = w, the differential equation of the homogeneous problem becomes

2. .
dd;];h + 2a%+ &’il, =0 (1.52)

The solution of this equation is'
iL(t) = Ate™™ + A,e ™ (1.53)

Which is a linear combination of the exponential term and an exponential term multiplied
by t.

1 Cdi di . , d(di . di .
The equation —-+2a —+a’i =0 may be rewrittenas —| —+ai |+a| —+ai |=0,by
dt dt de\ dt dt
. dl . . d§ . . —at
defining & = Z + i the equation becomes 2 + a& =0 whose solution is & = K,e™“". Therefore
t t

i . d o
e” d_ +e”ai= K, which may be written as z(eml) = K, . By integration we obtain the solution
t t

i=Kte“ +K,e”
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Summary of RLC transient response

Series Parallel
[0) 1 [0) !
[0) ) =—— = ——
’ JLC VLC
R 1
(04 o =— o =—
2L 2RC
Critically a=a,
Damped Response: Ate ™ + A,e™™
a<o,
Under Response: g;“_ﬁ (K1 cosw,t+ K, sin a)dt)
Damped Decaying Oscillatory
Where o, =0’ —a’
a>ao,
Over Response: 4’ + A4,e™
Damped

Where 51,2 =—-a*+a’ —o’

o
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Problem

For the circuit below, the switch S7 has been closed for a long time while switch S2 is

open. Now switch S/ is opened and then at time =0 switch S2 is closed.

Determine the current i(?) as indicated.

SI RI S2 R2
o—"0 AN o—"0o AN
i(t)

VNN
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