
Operational Amplifier Circuits 
 
Review: 
Ideal Op-amp in an open loop configuration 
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An ideal op-amp is characterized with infinite open–loop gain 

A→∞  
The other relevant conditions for an ideal op-amp are: 
 

1.  0Ip In= =
2.  Ri = ∞
3.  0Ro =

 
Ideal op-amp in a negative feedback configuration 
 
When an op-amp is arranged with a negative feedback the ideal rules are: 

1. : input current constraint 0Ip In= =

2. : input voltage constraint Vn Vp=

 

These rules are related to the requirement/assumption for large open-loop gain 
, and they form the basis for op-amp circuit analysis. A→∞

The voltage Vn tracks the voltage Vp and the “control” of Vn is accomplished via the 
feedback network. 
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Operational Amplifier Circuits as Computational Devices 

So far we have explored the use of op amps to multiply a signal by a constant. For the 
inverting amplifier the multiplication constant is the gain 2R

1R−  and for the non inverting 
amplifier the multiplication constant is the gain 2R

R11+ . Op amps may also perform other 
mathematical operations ranging from addition and subtraction to integration, 
differentiation and exponentiation.1 We will next explore these fundamental 
“operational” circuits. 

Summing Amplifier 

A basic summing amplifier circuit with three input signals is shown on Figure 1. 
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Figure 1. Summing amplifier 

Current conservation at node N1 gives 

 
 1 2 3 FI I I I+ + =  (1.1) 

By relating the currents I1, I2 and I3 to their corresponding voltage and resistance by 
Ohm’s law and noting that the voltage at node N1 is zero (ideal op-amp rule) Equation 
(1.1) becomes 

 

 1 2 3

1 2 3
in in in outV V V V

R R R RF
+ + = −  (1.2) 

 

 
                                                 
1 The term operational amplifier was first used by John Ragazzini et. al in a paper published in 1947. The 
relevant historical quotation from the paper is: 
“As an amplifier so connected can perform the mathematical operations of arithmetic and calculus on the 
voltages applied to its inputs, it is hereafter termed an ‘operational amplifier’.” 
John Ragazzini, Robert Randall and Frederick Russell, “ Analysis of Problems in Dynamics by Electronics 
Circuits,” Proceedings of IRE, Vol. 35, May 1947 
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And so Vout is 

 

 1 21 2 2out in in in
RF RF RFV V V
R R R

⎛= − + +⎜
⎝ ⎠

3V ⎞
⎟  (1.3) 

 

The output voltage Vout is a sum of the input voltages with weighting factors given by the 
values of the resistors. If the input resistors are equal R1=R2=R3=R, Equation (1.3) 
becomes 

 

 ( 1 2 3out in in in
RFV V V )V
R

= − + +  (1.4) 

 

The output voltage is thus the sum of the input voltages with a multiplication constant 

given by RF
R

. The value of the multiplication constant may be varied over a wide range  

and for the special case when RF = R the output voltage is the sum of the inputs 

 
 ( )1 2 3out in in inV V V V= − + +  (1.5) 
 

The input resistance seen by each source connected to the summing amplifier is the 
corresponding series resistance connected to the source. Therefore, the sources do not 
interact with each other. 
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Difference Amplifier 

This fundamental op amp circuit, shown on Figure 2, amplifies the difference between 
the input signals. The subtracting feature is evident from the circuit configuration which 
shows that one input signal is applied to the inverting terminal and the other to the non-
inverting terminal. 

outV

in2V

in1V
1I

2I

FI

1N

R2R1

R3

R4

 
Figure 2. Difference Amplifier 

Before we proceed with the analysis of the difference amplifier let’s think about the 
overall behavior of the circuit. Our goal is to obtain the difference of the two input 
signals ( )2 1-in inV V . Our system is linear and so we may apply superposition in order to 
find the resulting output. We are almost there once we notice that the contribution of the 
signal Vin2 to the output is  

 

 2 2
4 1

3 4 1out in
2R RV V

R R R
⎛ ⎞⎛= ⎜ ⎟⎜+⎝ ⎠⎝

⎞+ ⎟
⎠

 (1.6) 

 

and the contribution of signal Vin1 is 

 

 1 1
2-
1out in

RV V
R

⎛= ⎜
⎝ ⎠

⎞
⎟  (1.7) 

 

And the output voltage is 

 

 2 1 2 1
4 2- 1

3 4 1out out out in in
2-
1

R RV V V V V R
R R R

⎛ ⎞⎛ ⎞= = +⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠ R
 (1.8) 
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Note that in order to have a subtracting circuit which gives Vout=0 for equal inputs, the 
weight of each signal must be the same. Therefore 

 

 4 21
3 4 1 1

2R R R
R R R

⎛ ⎞⎛ ⎞+ =⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠ R
 (1.9) 

which holds only if  

 

 4
3 1

2R R
R R

=  (1.10) 

 

The output voltage is now 

 ( 2 1
2 -
1out in in

RV V V )
R

=  (1.11) 

 

which is a difference amplifier with a differential gain of R2/R1 and with zero gain for 
the common mode signal. It is often practical to select resistors such as R4=R2 and 
R3=R1. 

The fundamental problem of this circuit is that the input resistance seen by the two 
sources is not balanced. The input resistance between the input terminals A and B, the 

differential input resistance, Rid (see Figure 3) is in
idR V

I
≡  

R1

outV
+V

R2

R3
inV

R4

+

-

I -VA

B

 
Figure 3. Differential amplifier 

Since V+ = V- ,  and thus 1   3 inV R I R= + I 2 1idR R= . The desire to have large input 
resistance for the differential amplifier is the main drawback for this circuit. This problem 
is addressed by the instrumentation amplifier discussed next. 

Instrumentation Amplifier 

Figure 4 shows our modified differential amplifier called the instrumentation amplifier 
(IA). Op amps U1 and U2 act as voltage followers for the signals Vin1 and Vin2 which see  
the infinite input resistance of op amps U1 and U2. Assuming ideal op amps, the voltage 
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at the inverting terminals of op amps U1 and U2 are equal to their corresponding input 
voltages. The resulting current flowing through resistor R1 is 

 1
1 1

in inV VI 2

R
−

=  (1.12) 

Since no current flows into the terminals of the op amp, the current flowing through 
resistor R2 is also given by Equation (1.12). 
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Figure 4. Instrumentation Amplifier circuit 

Since our system is linear the voltage at the output of  op-amp U1 and op-amp U2 is 
given by superposition as 

 

 01 in1 in2
2 2V 1 V V
1 1

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

R R
R R

 (1.13) 

 

 02 in2 in1
2 2V 1 V V
1 1

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

R R
R R

 (1.14) 

 

Next we see that op amp U3 is arranged in the difference amplifier configuration 
examined in the previous section (see Equation (1.11)). The output of the difference 
amplifier is 

 

 (out in2 in1
4 2 2V 1 V V
3 1
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

R R
R R

)  (1.15) 

 

The differential gain, 4 2 21
3 1

R R
R R

⎛ +⎜
⎝ ⎠

⎞
⎟ , may be varied by changing only one resistor: R1. 
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Current to voltage converters 

A variety of transducers produce electrical current in response to an environmental 
condition. Photodiodes and photomultipliers are such transducers which respond to 
electromagnetic radiation at various frequencies ranging from the infrared to visible to γ-
rays. 

A current to voltage converter is an op amp circuit which accepts an input current and 
gives an output voltage that is proportional to the input current. The basic current to 
voltage converter is shown on Figure 5. This circuit arrangement is also called the 
transresistance amplifier. 

inI

R

outV
1N

 
Figure 5. Current to voltage converter 

Iin represents the current generated by a certain transducer. If we assume that the op amp 
is ideal, KCL at node N1 gives 

 

 1
0 0out

out
V

1I V R
R
−⎛ ⎞+ = ⇒ = −⎜ ⎟

⎝ ⎠
I  (1.16) 

 

The “gain” of this amplifier is given by R. This gain is also called the sensitivity of the 
converter. Note that if high sensitivity is required for example 1V/µV then the resistance 
R should be 1 MΩ. For higher sensitivities unrealistically large resistances are required. 

A current to voltage converter with high sensitivity may be constructed by employing the 
T feedback network topology shown on  Figure 6. 

In this case the relationship between Vout and I1 is 

 

 1
2 21
1out

R RV
R R

⎛= − + +⎜
⎝ ⎠

I⎞⎟  (1.17) 
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Figure 6. Current to voltage converter with T network 
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Voltage to Current converter 

A voltage to current (V-I) converter accepts as an input a voltage Vin and gives an output 
current of a certain value. 

In general the relationship between the input voltage and the output current is 

 
 out inI SV=  (1.18) 
 
Where S is the sensitivity or gain of the V-I converter. 

Figure 7 shows a voltage to current converter using an op-amp and a transistor. The op-
amp forces its positive and negative inputs to be equal; hence, the voltage at the negative 
input of the op-amp is equal to Vin.  The current through the load resistor, RL, the 
transistor and R is consequently equal to Vin/R.  We put a transistor at the output of the 
op-amp since the transistor is a high current gain stage (often a typical op-amp has a 
fairly small output current limit). 

 

inV

Vcc

RL

R

 
Figure 7. Voltage to current converter 
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Amplifiers with reactive elements 

 
We have seen that op amps can be used with negative feedback to make simple linear 
signal processors. Examples include amplifiers, buffers, adders, subtractors, and for each 
of these the DC behavior described the apparent behavior over all frequencies. This of 
course is a simplification to treat the op amp ideally, as through it does not contain any 
reactive elements. Providing we keep the operating conditions out of the slew rate limit 
then this is a reasonable model. Here we wish to extend this picture of op amp operation 
to include circuits that are designed to be frequency dependent. This will enable the 
construction of active filters, integrators, differentiators and oscillators. 

The feedback network of an op-amp circuit may contain, besides the resistors considered 
so far, other passive elements.  Capacitors and inductors as well as solid state devices 
such as diodes, BJTs and MOSFETs may be part of the feedback network. 

In the general case the resistors that make up the feedback path may be replaced by 
generalized elements with impedance Z1 and Z2 as shown on Figure 8  for an inverting 
amplifier. 

inV
outV

1Z

2Z

 

 
Figure 8. Inverting amplifier with general impedance blocks in the feedback path. 

For an ideal op-amp, the transfer function relating Vout to Vin is given by 

 

 ( )
( )

2

1

out

in

ZV
V Z

ω
ω

= −  (1.19) 

 

Now, the gain of the amplifier is a function of signal frequency (ω) and so the analysis is 
to be performed in the frequency domain. This frequency dependent feedback results in 
some very powerful and useful building blocks. 
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The Integrator: Active Low Pass Filter 

The fundamental integrator circuit (Figure 9) is constructed by placing a capacitor C, in 
the feedback loop of an inverting amplifier. 

R

inV outV

C

R

CI

RI

 
Figure 9. The integrator circuit 

Assuming an ideal op-amp, current conservation at the indicated node gives 

 

 
=

= −

R C

in out

I I
V dVC
R dt

 (1.20) 

 

Rearranging Equation (1.20) and integrating from 0 to t, we obtain 

 

 
0

( ) 1( ) ( ) (0)τ τ τ= − ⇒ = − +∫ ∫ ∫
t

in
out out in out

VdV d V t V d V
RC RC

τ  (1.21) 

 

The output voltage is thus the integral of the input. The voltage  is the constant of 
integration and corresponds to the capacitor voltage at time t = 0. 

(0)outV

The frequency domain analysis is obtained by expressing the impedance of the feedback 
components in the complex plane. The transfer function may thus be written as 

 

 

1
ω

ω
= − = =out C

in R

V Z jj C
V Z R RC

 (1.22) 
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The above expression indicates that there is a 90o phase difference between the input and 
the output signals. This 90o phase shift occurs at all frequencies. The gain of the amplifier 

given by the modulus 1out

in

V
V Rω

=
C

 is also a function of frequency. For dc signals with 

ω=0 the gain is infinite and it falls at a rate of 20dB per decade of frequency change. The 
infinite gain for dc signals represents a practical problem for the circuit configuration of 
Figure 27. Since the equivalent circuit of a capacitor for ω=0 is an open circuit, the 
feedback path is open. This lack of feedback results in a drift (cumulative summing) of 
the output voltage due to the presence of small dc offset voltages at the input. This 
problem may be overcome by connecting a resistor, RF, in parallel with the feedback 
capacitor C as shown on Figure 10. 

R

inV outV

C

R

CI

RI

FR

 
Figure 10. Active Low Pass filter 

The feedback path consists of the capacitor C in parallel with the resistor RF. The 
equivalent impedance of the feedback path is 

 

 1 1
ω

ω
ω

Ζ
= = =

+ Ζ ++

F

F C F
F

F C F
F

R
R Rj CZ

R j R CR
j C

 (1.23) 

 

The transfer function ( )
( )1

Fout

in

ZV
V Z

ω
ω

= −  becomes 

 

 ( )
( )1 1 1

1
1 1

ω 1
ωω ω
ωΗ

= − = − = −
+ +

Fout F F

in F

ZV R R
jV Z R j R C R

 (1.24) 
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Where 

 1ω ≡H
FR C

 (1.25) 

Figure 11 shows the logarithmic plot of out

in

V
V

 versus frequency. At frequencies much less 

than ωH (ω << ωH) the voltage gain becomes equal to FR
R

, while at frequencies higher 

than ωH (ω >> ωH) the gain decreases at a rate of 20dB per decade. 

 
Figure 11.  Bode plot of active low pass filter with a gain of 5. 

 
 
 
So we have seen that the integration is achieved by charging the feedback capacitor. 
For an integrator to be useful it must be allowed to be reset to zero. Since the output is 
stored in the charge of the feedback capacitor, all we need to do is to short out the 
capacitor in order to reset the integrator. 
 
Integrators are very sensitive to DC drift, small offsets lead to a steady accumulation of 
charge in the capacitor until the op amp output saturates. We can avoid this by providing 
another feedback path for DC. The circuit incorporates a shorting path across the 
capacitor as shown on Figure 12. 

Chaniotakis and Cory. 6.071 Spring 2006  Page 13 



R

inV outV

C

R

CI

RI

FR

 

 
Figure 12. Integrator with reset button 
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The Differentiator: Active High Pass Filter 

A differentiator circuit may be obtained by replacing the capacitor with an inductor for 
Figure 9. In practice this is rarely done since inductors are expensive, bulky and 
inefficient devices. Figure 13 shows a fundamental differentiator circuit constructed with 
a capacitor and a resistor. 

inV outV

R

C

R

 
Figure 13. The differentiator circuit 

For an ideal op-amp, the current flowing through the capacitor, indVC
dt

, is equal to the 

current flowing through the resistor, outV
R

, and thus 

 

 = − in
out

dVV RC
dt

 (1.26) 

 

The output is thus proportional to the derivative of the input. 

 
As the integrator is sensitive to DC drifts, the differentiator is sensitive to high frequency 
noise. The differentiator thus is a great way to search for transients, but will add noise. 
The integrator will decrease noise. Both of these arguments assume the common situation 
of the noise being at higher frequency than the signal. 
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Active Band Reject Filter 
The integrator and differentiator demonstrate that op amp circuits can be designed to be 
frequency dependent. This permits the design of active filters, a filter that has gain. We 
saw before that we could design passive filters based on LC circuits, active filters are no 
more complicated. Simple selective filters can be made through a frequency dependent 
impedance in the feedback loop. 
 
Consider the band reject circuit shown on Figure 14. 

R1

inV outV

R

FI

RI

FR

L C

 
Figure 14. Active band reject filter 

 
We can understand how this circuit works without any detailed calculations. All we need 
to do is look at the feedback loops. There are two paths in the feedback loop: a frequency 
independent path with resistance RF, and a frequency dependent path with impedance 
given by 
 

 1Z j L
Cω ω

ω
⎛= −⎜
⎝ ⎠

⎞
⎟  (1.27) 

 
Let’s look at the behavior of the circuit as a function of frequency. 
 
For DC signals ( 0ω = ) the capacitor acts as an open circuit and the equivalent circuit is 
shown on Figure 15. 
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R1
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Figure 15 

 
 
Similarly at high frequencies (ω→∞ ) the inductor acts as an open circuit and the 
equivalent circuit is the same as the one shown on Figure 15.  
 
Therefore the voltage transfer characteristics at DC and at high frequency are the same 
with a gain given by 
 

 
1

out F

in

V RG
V R

= = −  (1.28) 

  
The other frequency of interest if the resonance frequency, which occurs when Zω  as 
given by Equation (1.27) is equal to zero. The resonance frequency is  
 

 1
o LC

ω =  (1.29) 

and the circuit reduces to the one shown on Figure 16. 
 

R1

inV outV

R

FI

RI

 
Figure 16 

 
which gives Vout=0 at oω ω= . 
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So this is a filter that passes and amplifies every frequency except the resonance 
frequency. 
 

For the full analysis of this active filter we may write down the complete expression for 
the impedance of the feedback loop which is 

 

 
( )

( )
2

2

1
1

//
1 1

F
F

F F
F

F

j L R j LC RCZ Z R
R C j LCR j L

C

ω

ω ωω
ω ωω

ω

⎛ ⎞−⎜ ⎟ −⎝ ⎠= = =
⎛ ⎞ + −+ −⎜ ⎟
⎝ ⎠

 (1.30) 

 
 
And thus the general transfer function of the filter is 
 

 
( )

( )
2

2
1 1

1

1
Fout F

in F

j LC RV Z
V R R R C j LC

ω

ω ω

−
= − =

⎡ ⎤+ −⎣ ⎦
 (1.31) 
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Diodes and transistors in op-amp circuits. 

Diodes and transistors may also be used in op-amp circuits. The nonlinear behavior of 
these devices result in very interesting and useful non-linear op-amp circuits. 

Logarithmic Amplifier 

If we are interested in processing a signal that has a very wide dynamic range we take 
advantage of the exponential i-v characteristics of the diode and design an amplifier 
whose output is proportional to the logarithm of the input. 

In practice we may have the voltage signal that corresponds to a certain chemical activity 
such as the activity, or concentration, of hydrogen ions in a solution which represents the 
pH of the solution. In this case the voltage is exponentially related to the concentration 
(pH). 

 
 ln( )Vi Vo k pH=  (1.32) 
 
If we use this signal as the input to an inverting amplifier we may linearize the signal by 
using a diode in the feedback path of the amplifier. 
 
Recall the i-v relationship for a diode 
 

 
/

/

1qV kT

qV kT

I Io e

Ioe

⎡ ⎤= −⎣ ⎦  (1.33) 

 
Consider the circuit shown on Figure 17. 
 

R1

iV
oV
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I
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Figure 17. Logarithmic Amplifier 

KCL at the indicated node gives 
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 ( ) /

1
q Vn Vo kTVi Vn Ioe

R
−−

=  (1.34) 

 
And since  we obtain 0Vn Vp= =
 

 ( ) /

1
q Vo kTVi Ioe

R
−=  (1.35) 

 
And solving for Vo gives the desired relationship. 
 

 

ln
1

ln( ) ln( 1)

ln( )
a b

kT ViVo
q Io R

kT kTVo Vi IoR
q q

Vo a Vi b

= −

= − +

= − +

 (1.36) 

 
 
Similarly and antilogarithmic amplifier may be constructed by placing the diode in 
series with the signal source as shown on Figure 18. 
 

iV
oV

R

FI

I
Vn
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R2

 
Figure 18. Antilogarithmic amplifier 

 
Here you may show that 
 
  (1.37) /2 qVi kTVo IoR e= −
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Superdiode. Precision half wave Rectifier 

The diode rectifier circuit and its associated voltage transfer characteristic curve are 
shown on  Figure 19(a) and (b). 

 

R11
inV outVdV+ -

D

 

 

(a) 

outV

inVdV  

(b) 

 
Figure 19.  Diode rectifier circuit (a) and voltage transfer curve (b) 

The offset voltage Vd is about 0.7 Volts and this offset value is unacceptable in many 
practical applications. The operational amplifier and the diode in the circuit of Figure 20 
form an ideal diode, a superdiode, and thus they eliminate the offset voltage Vd from the 
voltage transfer curve forming an ideal half wave rectifier. 

inV outV
R

D

Superdiode

dV+ -
V1

I

I

V+

V- 1

d I2

 

outV

inV  

 
Figure 20. Precision half wave rectifier circuit and its voltage transfer curve. 

Let’s analyze the circuit by considering the two cases of interest: Vin>0 and Vin<0. 

For Vin<0 the current I2 and id will be less than zero (point in a opposite direction to the 
one indicated). However, negative current can not go through the diode and thus the 
diode is reverse biased and the feedback loop is broken. Therefore the current I2 is zero 
and so the output voltage is also zero, Vout=0. Since the feedback loop is open the 
voltage V1 at the output of the op-amp will saturate at the negative supply voltage. 
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For Vin>0, Vout=Vin  and the current I2=Id and the diode is forward biased. The 
feedback loop is closed through the diode. Note that there is still a voltage drop Vd across 
the diode and so the op-amp output voltage V1 is adjusted so that V1=Vd+Vin. 
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Problems 

P1. Resistors R1 and R2 of the circuit on Figure P1 represent two strain gages placed 
across each other on a beam in order to measure the tensile and compressive stains. R1 
and R2 vary symmetrically by a factor δ as R1=R(1-δ) and R2=R(1+δ). 

R1

R2

R

R

Vb

+ _
Vs

 

Figure P1. 

Design an amplifier so that the output varies from -10V to +10V as the parameter δ varies 
from -0.01 to +0.01. The bias voltage Vb=+10V and R=10kΩ. 

P2. The resistors of the amplifier circuit of Figure P2 have a tolerance of ±δ%. 

1. Assume that Vin is known precisely and calculate the deviation in the output 
voltage Vout. 

2. For R1=15kΩ±5% and R2=200kΩ±5% and Vin=100mV±1% calculate the output 
voltage. 

R1
R2

inV

outV

 

Figure P2. 
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P3. Calculate the output voltage Vout for the following circuits. 

 

RinV outV

3R2R
 

 

2RinV outV

3RR

R2 R2

 

 

P4 For the circuit on Figure P4 determine the value of resistor Rx so that the output 
voltage is zero. 

R3inV
outV

R4

Rx

R2
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P5 The circuit on Figure P5 is a current source. 

1. Show that the amount of current delivered to the load is controlled by resistor R3. 

2. Calculate the resistance seen by the Load. 

R3

inV
outV

R4

R2

R1

Load

 

Figure P5 

P6. For the circuit on Figure P6 calculate the currents i1, i2, i3, i4 and the voltages v1 and 
Vout. Refer your answers to the indicated current directions. 

R3

inV
outV

R4
R2

R1

i1

i2

i3

i4

v1

 

Figure P6 
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P7  

 

 

For the voltage to current converter, briefly (in 1-2 sentences) describe what happens 
when each of the following faults happen (alone, independently of other faults). 

a. the Zener diode is shorted 

b. R5 has a bad soldering joint and is opened 

c. The load becomes shorted 

d. The connection between the op-amp output and the base of the transistors 
becomes opened 

 

P8: Op-amp nonidealities: 

 

a. What is the effect of a 1uA input bias current on the output voltage of the opamp? 

b. What is the effect of a 5mV input offset voltage on the output of the opamp? 
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