
Capacitors and inductors 
 
 
We continue with our analysis of linear circuits by introducing two new passive and 
linear elements: the capacitor and the inductor. 
All the methods developed so far for the analysis of linear resistive circuits are applicable 
to circuits that contain capacitors and inductors. 
 
Unlike the resistor which dissipates energy, ideal capacitors and inductors store energy 
rather than dissipating it. 
 
Capacitor: 
 
In both digital and analog electronic circuits a capacitor is a fundamental element. It 
enables the filtering of signals and it provides a fundamental memory element. 
The capacitor is an element that stores energy in an electric field. 
 
The circuit symbol and associated electrical variables for the capacitor is shown on 
Figure 1. 
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Figure 1. Circuit symbol for capacitor 
 
 
The capacitor may be modeled as two conducting plates separated by a dielectric as 
shown on Figure 2. 
 
When a voltage v is applied across the plates, a charge +q accumulates on one plate and a 
charge –q on the other. 
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Figure 2. Capacitor model 
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If the plates have an area A and are separated by a distance d,  the electric field generated 
across the plates is 
 

 qE
ε

=
Α

 (1.1) 

 
and the voltage across the capacitor plates is  
 

 qdv Ed
Aε

= =  (1.2) 

 
The current flowing into the capacitor is the rate of change of the charge across the 

capacitor plates dqi
dt

= . And thus we have, 

 

 dq d A A dv dvi v
dt dt d d dt dt

ε ε⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

C  (1.3) 

 
The constant of proportionality C is referred to as the capacitance of the capacitor. It is a 
function of the geometric characteristics of the capacitor - plate separation (d) and plate 
area (A) - and by the permittivity (ε) of the dielectric material between the plates. 
 

 AC
d
ε

=  (1.4) 

 
Capacitance represents the efficiency of charge storage and it is measured in units of 
Farads (F). 
 
The current-voltage relationship of a capacitor is 
 

 dvi C
dt

=  (1.5) 

 
The presence of time in the characteristic equation of the capacitor introduces new and 
exciting behavior of the circuits that contain them. Note that for DC (constant in time) 

signals ( 0dv
dt

= ) the capacitor acts as an open circuit (i=0).  Also note the capacitor does 

not like voltage discontinuities since that would require that the current goes to infinity 
which is not physically possible.  
 
If we integrate Equation (1.5) over time we have 
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tt dvidt C dt

dt−∞ −∞

= ⌠⎮
⌡∫  (1.6) 

 

0

1

1 (0)

t

t

v i dt
C

i dt v
C

−∞

=

= +

∫

∫
 (1.7) 

The constant of integration v(0) represents the voltage of the capacitor at time t=0. 
The presence of the constant of integration v(0) is the reason for the memory properties 
of the capacitor. 
 
Let’s now consider the circuit shown on Figure 3 where a capacitor of capacitance C is 
connected to a time varying voltage source v(t). 

i(t)

Cv(t) v
+

-
 

 
Figure 3.  Fundamental capacitor circuit 

 
If the voltage v(t) has the form 
 ( ) cos( )v t A tω=  (1.8) 
 Then the current i(t) becomes 
 

 

( )

sin( )

cos
2

dvi t C
dt

C A t

C A t

ω ω
πω ω

=

= −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (1.9) 

Therefore the current going through a capacitor and the voltage across the capacitor are 
90 degrees out of phase. It is said that the current leads the voltage by 90 degrees. 
 
 The general plot of the voltage and current of a capacitor is shown on Figure 4. The 
current leads the voltage by 90 degrees. 
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Figure 4 

 
If we take the ratio of the peak voltage to the peak current we obtain the quantity  
 

 1Xc
Cω

=  (1.10) 

 
Xc has the units of Volts/Amperes or Ohms and thus it represents some type of resistance. 
Note that as the frequency 0ω →  the quantity Xc goes to infinity which implies that the 
capacitor resembles an open circuit . 
 

Capacitors do like to pass current at low frequencies 
 
As the frequency becomes very large ω→∞  the quantity Xc goes to zero which implies 
that the capacitor resembles a short circuit. 
 

Capacitors like to pass current at high frequencies 
 
 
Capacitors connected in series and in parallel combine to an equivalent capacitance. Let’s 
first consider the parallel combination of capacitors as shown on Figure 5. Note that all 
capacitors have the same voltage, v, across them.  

i(t)

v(t) v
+

-
C1 C2 C3 Cn

- - -

- - -

i1 i2 i3 in

 
 

Figure 5. Parallel combination of capacitors. 
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By applying KCL we obtain 
 
 1 2 3i i i i in= + + + +…  (1.11) 

 And since dvik Ck
dt

=  we have 

 

 

1 2 3

1 2 3
Ceq

dv dv dv dvi C C C Cn
dt dt dt dt

dvC C C Cn
dt

dvCeq
dt

= + + + +

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

=

…

…����	���
  (1.12) 

 
Capacitors connected in parallel combine like resistors in series 

 
Next let’s look at the series combination of capacitors as shown on Figure 6. 
 

i(t)

v(t)

C1 C2 C3 Cn
- - -

+   v1   - +   v2   - +   v3   - +   vn   -

 
 

Figure 6. Series combination of  n capacitors. 
 
Now by applying KVL around the loop and using Equation (1.7) we have 
 

 
0

1

0

1 2 3

1 1 1 1 ( ) (0)
1 2 3

1 ( ) (0)

t

Ceq

t

v v v v vn

i t dt v
C C C Cn

i t dt v
Ceq

= + + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟= + + + + +⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= +

∫

∫

…

…
�����	����


 (1.13) 

 
 

Capacitors in series combine like resistors in parallel 
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By extension we can calculate the voltage division rule for capacitors connected in series. 
Here let’s consider the case of only two capacitors connected in series as shown on 
Figure 7. 

i(t)

v(t)

C1

C2

v1

v2

+

+

-

-
 

 
Figure 7. Series combination of two capacitors 

 
 
The same current flows through both capacitors and so the voltages v1 and v2 across 
them are given by:1

 
0

11
1

t

v
C

= idt∫  (1.14) 

 
0

12
2

t

v
C

= idt∫  (1.15) 

And KVL around the loop results in 
 

 
0

1 1( )
1 2

t

v t idt
C C

⎛ ⎞= +⎜ ⎟
⎝ ⎠ ∫  (1.16) 

Which in turn gives the voltages v1 and v2 in terms of v and the capacitances: 
 

 21
1 2
Cv v

C C
=

+
 (1.17) 

 12
1 2
Cv v

C C
=

+
 (1.18) 

 
Similarly in the parallel arrangement of capacitors (Figure 8) the current division rule is 
 

 11
1 2
Ci i

C C
=

+
 (1.19) 

 

 22
1 2
Ci i

C C
=

+
 (1.20) 

 

                                                 
1 Assume here that both capacitors are initially uncharged 
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i(t)

i(t) v
+

-
C1 C2

i1 i2

 
Figure 8.  Parallel arrangement of two capacitors 

 
The instantaneous power delivered to a capacitor is 
 
 ( ) ( ) ( )P t i t v t=  (1.21) 
 
The energy stored in a capacitor is the integral of the instantaneous power. Assuming that 
the capacitor had no charge across its plates at [ ]( ) 0t v= −∞ −∞ =  then the energy stored 
in the capacitor at time t is 
 

 

2

( ) ( )

( ) ( )

( )( )

1 ( )
2

t

t

t

E t P d

v i d

dvv C d
d

C v t

τ τ

τ τ τ

ττ τ
τ

−∞

−∞

−∞

=

=

=

=

⌠⎮
⌡

∫

∫
 (1.22) 
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Real Capacitors. 
 
If the dielectric material between the plates of a capacitor has a finite resistivity – as 
compared to infinite resistivity in the case of an ideal capacitor – then there is going to be 
a small amount of current flowing between the capacitor plates. In addition there are lead 
resistance and plate effects. 
 
In general the circuit model of a non-ideal capacitor is shown on Figure 9 
 

C
non-ideal

=

i
+               v                    -

Rp

i

Rs
C

 
 
 

Figure 9. Circuit of non-ideal capacitor 
 
The resistance Rp is typically very large and it represents the resistance of the dielectric 
material. Resistance Rs is typically small and it corresponds to the lead and plate 
resistance as well as resistance effects due to the operating conditions (for example signal 
frequency) 
 
In practice we are concerned with the in series resistance of a capacitor called the 
Equivalent Series Resistance (ESR). ESR is a very important capacitor characteristic and 
must be taken into consideration in circuit design. Therefore the non-ideal capacitor 
model of interest to us is shown on  
 

C

i R(ESR)

 
Figure 10. Non-ideal capacitor with series resistor. 

 
Typical values of ESR are in the mΩ-Ω range.
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A capacitor stores energy in the form of an electric field 

Current-voltage relationship 1,dvi C v idt
dt C

= = ∫  

In DC the capacitor acts as an open circuit 
 
The capacitance C represents the efficiency of storing charge. 
 
The unit of capacitance is the Farad (F). 1 Farad=1Coulomb/1Volt 
 
Typical capacitor values are in the mF ( 310−  F) to pF ( 1210− F) 
 

The energy stored in a capacitor is 21
2

E Cv=  

 
Large capacitors should always be stored with shorted leads. 
 
 
 
 
Example: 
 
A 47µF capacitor is connected to a voltage which varies in time as 

( ) 20sin(200 )v t tπ=  volts.  
Calculate the current i(t) through the capacitor 
 
 
The current is given by 

6 647 10 20sin(200 ) 47 10 20 200 cos(200 ) 0.59cos(200 )

dvi C
dt

d t t
dt

π π π π− −

=

= × = × × × = t Amperes

  

i(t)

Cv(t) v
+

-
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Example: 
 
Calculate the energy stored in the capacitor of 
the circuit to the right under DC conditions. 
 
In order to calculate the energy stored in the 
capacitor we must determine the voltage across 
it and then use Equation (1.22). 
 
We know that under DC conditions the 
capacitor appears as an open circuit (no current 
flowing through it). Therefore the corresponding circuit is 

1k Ω 2k Ω 

18 V 1uF 

 

1k Ω 2k Ω 

18 V 

v

 
  
And from the voltage divider formed by the 1kΩ and the 2kΩ resistors the voltage v is 
12Volts. Therefore the energy stored in the capacitor is 

 2 6 21 11 10 12 72µJoule
2 2

Ec Cv −= = × × = s  
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Example 
 
Calculate the energy stored in the capacitors of the following circuit under DC 
conditions. 
 

10k Ω 25k Ω 

10 V 1uF 

50uF 

50k Ω 

10uF 

C1

C2

C3

 
Again DC conditions imply that the capacitor behaves like an open circuit and the 
corresponding circuit is 
 

10k Ω 25k Ω 

10 V 
50k Ω 

C1

C2

C3

v1

v2

 
From this circuit we see that the voltages v1 and v2 are both equal to 10 Volts and thus 
the voltage across capacitor C1 is 0 Volts. 
 
Therefore the energy stored in the capacitors is: 
 
For capacitor C1: 0 Joules 

For capacitor C2: 2 6 2
2

1 12 1 10 10 50µJoules
2 2CE C v −= = × × =  

For capacitor C3: 2 6 2
3

1 13 10 10 10 500µJoules
2 2CE C v −= = × × =  
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Inductors 
 
The inductor is a coil which stores energy in the magnetic field 
 
Consider a wire of length l forming a loop of area A as shown on Figure 11. A current i(t) 
is flowing through the wire as indicated. This current generates a magnetic field B which 
is equal to 
 

 ( )( ) i tB t
l

µ=  (1.23) 

 
Where µ is the magnetic permeability of the material enclosed by the wire. 
 

B

A
Area

i(t)
l

Loop length

 
 

Figure 11. Current loop for the calculation of inductance 
 
The magnetic flux, Φ, through the loop of area A is 
 

 

( )

( )

( )

AB t
A i t
l

Li t

µ
Φ =

=

=

 (1.24) 

Where we have defined AL
l
µ

≡ . 

From Maxwell’s equations we know that 
 

 ( )d v t
dt
Φ
=  (1.25) 

 ( ) ( )d Li t v t
dt

=  (1.26) 

 
And by taking L to be a constant we obtain the current-voltage relationship for this loop 
of wire also called an inductor. 
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 div L
dt

=  (1.27) 

 
The parameter L is called the inductance of the inductor. It has the unit of Henry (H). 
 
The circuit symbol and associated electrical variables for the inductor is shown on Figure 
12 

+   v   -

i L

 
 

Figure 12. Circuit symbol of inductor. 
 
 

For DC signals ( 0di
dt

= ) the inductor acts as a short circuit (v=0).  Also note the inductor 

does not like current discontinuities since that would require that the voltage across it 
goes to infinity which is not physically possible. (We should keep this in mind when we 
design inductive devices. The current through the inductor must not be allowed to change 
instantaneously.) 
 
If we integrate Equation (1.27) over time we have 
 

 
tt divdt L dt

dt−∞ −∞

= ⌠⎮
⌡∫  (1.28) 

 

0

1

1 (0)

t

t

i v dt
L

v dt i
L

−∞

=

= +

∫

∫
 (1.29) 

The constant i(0) represents the current through the inductor at time t=0. (Note that we 
have also assumed that the current at t = −∞  was zero.) 
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Let’s now consider the circuit shown on  Figure 13 where an inductor of inductance L is 
connected to a time varying current source i(t). 

i(t) v
+

-
L

i(t)

 
 

Figure 13.  Fundamental inductor circuit 
 
If we assume that the current i(t) has the form 
 
 ( ) cos( )oi t I tω=  (1.30) 
 Then the voltage v(t) becomes 
 

 

( )

sin( )

cos
2

o

o

div t L
dt
L I t

L I t

ω ω
πω ω

=

= −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (1.31) 

 
Therefore the current going through an inductor and the voltage across the inductor are 
90 degrees out of phase. Here the voltage leads the current by 90 degrees. 
 
 The general plot of the voltage and current of an inductor is shown on Figure 14.  
 

 
Figure 14 
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Inductor connected in series and in parallel combine to an equivalent inductance. Let’s 
first consider the parallel combination of inductors as shown on Figure 15. Note that all 
inductors have the same voltage across them.  

i(t)

v(t) v
+

-

- - -

- - -

i1 i2 i3 in

L1 L2 L3 Ln

 
 

Figure 15. Parallel combination of inductors. 
 
By applying KCL we obtain 
 
 1 2 3i i i i in= + + + +…  (1.32) 

 And since 
0

1 (0)
t

ik vdt ik
Lk

= +∫  we have 

 

 

0 0 0 0

0 (0)
1

0

1 1 1 11(0) 2(0) 3(0) (0)
1 2 3

1 1 1 1 1(0) 2(0) 3(0) (0)
1 2 3

1 (0)

t t t t

t

i

Leq

t

i vdt i vdt i vdt i vdt in
L L L Ln

vdt i i i in
L L L Ln

vdt i
Leq

= + + + + + + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟= + + + + + + + + +⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= +

∫ ∫ ∫ ∫

∫

∫

…

… …������	�����
�����	����

 (1.33) 

 
Inductors in parallel combine like resistors in parallel 

 
Next let’s look at the series combination of inductors as shown on Figure 16. 
 

i(t)

v(t)

- - -
+   v1   - +   v2   - +   v3   - +   vn   -

L1 L2 L3 Ln

 
 

Figure 16. Series combination of inductors. 
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Now by applying KVL around the loop we have 
 

 

1 2 3

1 2 3
Leq

v v v v vn

diL L L Ln
dt

diLeq
dt

= + + + +

⎛ ⎞
= + + + +⎜⎜
⎝ ⎠

=

…

…����	���
 ⎟⎟  (1.34) 

 
 

Inductor in series combine like resistor in series 
 
 
The energy stored in an inductor is the integral of the instantaneous power delivered to 
the inductor. Assuming that the inductor had no current flowing through it at 

[ ]( ) 0t i= −∞ −∞ =  then the energy stored in the inductor at time t is 
 

 

2

( ) ( )

( ) ( )

( ) ( )

1 ( )
2

t

t

t

E t P d

v i d

diL i d
d

L i t

τ τ

τ τ τ

τ τ τ
τ

−∞

−∞

−∞

=

=

=

=

⌠⎮
⌡

∫

∫
 (1.35) 
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Real Inductors. 
 
There are two contributions to the non-ideal behavior of inductors. 

1. The finite resistance of the wire used to wind the coil 
2. The cross turn effects which become important at high frequencies 

 
 
The non-ideal inductor may thus be modeled as shown on Figure 17 

L

i

v
+

-
=

non-ideal  

L

Rc

Rf

resistance of coil
(small value)

Frequency dependent
turn to turn
field effects
(important at high
frequecnies)

i

v

+

-

 
 

Figure 17. Circuit momdel of non-ideal inductor 
 
In addition to the resistive non-idealities of inductors there could also be capacitive 
effects. These effects usually become important at high frequencies. Unless stated 
otherwise, these effects will be neglected in out analysis. 
 
 
  
A inductor stores energy in a magnetic field 

Current-voltage relationship 1,div L i vdt
dt L

= = ∫  

The energy stored in an inductor is 21
2

E Li=  

In DC the inductor behaves like a short circuit 
 
The inductance L represents the efficiency of storing magnetic flux. 
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Problems: 
Calculate the equivalent capacitance for the following arrangements: 
 

1 F 100 F 

1 F 

2 F 5 F Ceq

 
 
 

---

---
to infinity

C C C C

2C 2C 2CCeq

 
 
 
Calculate the voltage across each capacitor and the energy stored in each capacitor. 
 

2uF 20uF 
10uF 10uF 

5uF 10 V 

 
 
 
In the circuit below the current source provides a current of 10exp( 2 )i t= − mA. Calculate 
the voltage across each capacitor and the energy stored in each capacitor at time t=2 sec. 
 

20uF 
10uF 

5uF i(t)

+    v1    -

v2
+

-
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