
 
Sinusoidal Steady State Response: 
Frequency domain representation 

Impedance 
 
Using the complex forcing function 
 
Let’s consider the RL circuit shown on Figure 1. The circuit is driven by the sinusoidal 
source of the form ( ) cos( )s ov t v tω= . 
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Figure 1 

haracterizing the system is 

( ) ( ) cos( )o
di tL R i t v t
dt

ω+ =  (1.1) 

’s identity we know that 

{ }cos( ) Re j t
ov t v e ωω = o

t

 (1.2) 

 place of the source function cos( )ov ω  the complex source j t
ov e ω  .  

unction j t
ov e ω  contains the term cos( )ov tω  which is our source function, 

sin( )ov tω . 

ill proceed with the analysis using the complex function, j t
ov e ω , as the 
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 Figure 2 shows the same circuit but with the complex source in the place of the source. 
(Note that we have used different variables to indicate the response of the circuit to the 
complex forcing function.) 
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j t
oVs v e ω=  

 
Figure 2 

 
The corresponding complex response for the current I(t) is 
 
 (( ) j t

oI t I e )ω φ+=  (1.3) 
 
and by substituting the complex form for sV  and I(t) into Equation (1.1) we have 
 

 ( ) ( )j t j t j t
o o

d
oL I e I e v e

dt
ω φ ω φ+ ++ = ω  (1.4) 

 
 
which upon simplification becomes 
 
 ( )j

o oI e R j L vφ ω+ =  (1.5) 
 
Equation (1.5) contains the information for both the amplitude oI  and the phase φ . By 
rearranging Equation (1.5) we have 
 

 j o
o

vI e
R j L

φ

ω
=

+
 (1.6) 

In order to determine oI  and φ  we express the right hand side of Equation (1.6) in polar 
coordinates 
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1
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ω
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 (1.7) 

 
And thus we have an expression for the amplitude oI and the phase φ . 
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 1tan L
R
ωφ − ⎛= − ⎜
⎝ ⎠

⎞
⎟  (1.9) 

 
Therefore, the complex response (Equation (1.3) ) becomes 
 

 1

2 2

2

/( ) exp tan
1

ov R Li t t
RL

R

ωω
ω

−⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
+

 (1.10) 

 
which by using Euler’s identity is 
 

 1 1

2 2 2 2

2 2

Real part of the solution imaginary part of the solution

/ /( ) cos tan sin tan
1 1

o ov R v RL LI t t j t
R RL L

R R

ω ωω ω
ω ω

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
+ +
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 (1.11) 

 
 
Since our original forcing source was the cosine function (see Figure 1), the solution to 
our original problem corresponds to the real part of the complex response function given 
by Equation (1.11) which is: 
 

 1

2 2

2

/( ) cos tan
1

ov R Li t t
RL

R

ωω
ω

−⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
+

⎟  (1.12) 

 
 

6.071/22.071 Spring 2006, Chaniotakis and Cory  3 



Solution procedure: 
 

1. We would like to find the response of a linear system to a source term of the form 
cosA tω  or sinA tω  

 
2. Determine the equation that describes the system 

 
3. Assume a complex source term of the form j tAe ω  

 
4. Response is then of the form ( )j tBe ω φ+  

 
5. Substitute into the system equation and solve for B and φ 

 
6. The response to our original system corresponds to: 

 
{ }( )Re j tBe ω φ+ :  If the original source is of the form cosA tω  

 
{ }( )Im j tBe ω φ+ :  If the original source is of the form sinA tω
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Example: Let’s calculate the voltage vL(t) for the following circuit for which the 
source is ( ) 5sin( )sv t tω=  Volts 

1.5k Ω 

R

Lv

+

-

i(t)

s vL(t)(t)
47mH 

 
 
The equation that characterizes this circuit is obtained by the application of KVL around 
the mesh and it is 

( ) ( ) sin( )o
di tL L i t v t
dt

ω+ =  

 
Where L=47mH, R=1.5kΩ and vo =5V. 
 
We will proceed by assuming a complex forcing function of the form 
 

( ) 5 j t
sV t e ω=  Volts 

 
The corresponding response for the current will be given by 
 

( )( ) j t
oI t I e ω φ+=  

 
And the solution for our system is simply the imaginary part of the above expression 
which is given by 

1

2 2

2

/( ) sin tan
1

ov R Li t t
RL

R

ωω
ω

−⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
+

 

 
For L=47mH, R=1.5kΩ and vo =5V  the solution becomes 
 

( )( )
3

1 5

10 2

3.33 10( ) sin tan 3.1 10 Amperes
1 9.8 10

i t tω ω
ω

−
− −

−

×
= − ×

+ ×
 

 

Since ( )( )L
di tv t L

dt
= , the voltage across the inductor becomes 

 

( )( )
4

1 5

10 2

1.57 10( ) cos tan 3.1 10 Amperes
1 9.8 10

Lv t tω ω ω
ω

−
− −

−

×
= − ×

+ ×
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The plots for the current  and voltage  are shown on the figures below for a 
signal frequency of 2kHz. At this frequency the phase is -21.49 degrees and the 
amplitude of  is 1.83 Volts and the amplitude of the current  is 3.1 mA 
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The following figure shows the plot of the ratio vL/vo as a function of the parameter ωL/R. 
Note that at ωL/R = 1, / 1/L ov v = 2  
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The Phasor: 
[Not a physical quantity: just a compact representation of a complex number] 
 
The phasor is another way of representing the complex source and response of a system. 
It is a compact representation of a signal in the frequency domain in which only the 
magnitude and the phase are shown explicitly. The frequency is implicitly included in the 
representation. 
 
Here is a summary of how a signal is represented in the time and the frequency domains. 
 

{ }( )

Time domain

Frequency domain

( ) cos( )

( ) Re

(phasor)

j t

j

v t A t

v t Ae

V Ae
V A

ω φ

φ

ω φ

φ

+

= + →

= →

= →
= ∠

���������	��������


�������	������


 

The parameter V  is called the phasor and it may be written in the exponential form or 
with the angle notation as indicated above. 
 
The usefulness of the phasor notation will become apparent as we look at how the 
voltage-current relationships for the inductor and the capacitor are represented in the 
frequency domain. 
 
The current-voltage relationship for a capacitor in the time domain is 
 

 ( )( ) dv ti t C
dt

=  (1.13) 

 
The corresponding schematic is shown on Figure 3. 
 

C

i(t)

v(t)
+

-
 

 
Figure 3 

 
By applying a complex voltage of the form 
 
 (( ) j t

ov t v e )ω θ+=  (1.14) 
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The current flowing through the capacitor is 
 
 (( ) j t

oi t i e )ω φ+=  (1.15) 
 
Note that signals represented by equations (1.14) and (1.15) have the same frequency but 
different phases.  
 
The current-voltage relationship for the capacitor becomes 
 

 
( )( )

( )
j t

oj t
o

d v e
i e C

dt

ω θ
ω φ

+
+ =  (1.16) 

 
which upon simplification gives 
 
 N N

j
o

I V

i e j C v e j
o

φ θω=  (1.17) 

 
Equation (1.17) may now be written in compact phasor notation as follows 
 
 I j CVω=  (1.18) 
 
The corresponding circuit is shown on Figure 4. 

C

I

V
+

-
 

 
Figure 4 

 
Equation (1.18) represents the behavior of the capacitor in the frequency domain and it is 
equivalent to the time domain representation given by Equation (1.13). Note that by 
working in the frequency domain we have reduced the differential relationship given by 
Equation (1.13) to an equivalent algebraic relationship, Equation (1.18). 
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Similarly, the time domain current-voltage relationship for an inductor may be reduced to 
the corresponding relationship in the frequency domain. Figure 5 shows the circuit 
representation in the time domain. 

L

i(t)

v(t)
+

-
 

Figure 5 
 
The current-voltage relationship for the inductor in the time domain is  
 

 ( )( ) di tv t L
dt

=  (1.19) 

 
By using again the complex forcing functions for the voltage and the current, Equations 
(1.14) and (1.15) respectively,  the current-voltage relationship given by Equation (1.19) 
becomes 
 

 
( )( )

( )
j t

oj t
o

d i e
v e L

dt

ω φ
ω θ

+
+ =  (1.20) 

which simplifies to 
 
 N N

j
o

V I

v e j L i e j
o

θ φω=  (1.21) 

 
 V j L Iω=  (1.22) 
 
Again we have reduced the differential relationship given by Equation (1.19) to an 
equivalent algebraic relationship, Equation (1.22). The corresponding circuit is shown on 
Figure 6 

L

I

V
+

-
 

 
Figure 6 
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Equivalently we may also show that for the resistor, the frequency domain representation 
has the same form as the time domain representation. 
 
The table below summarizes the characteristic relationships between voltage and current 
for the capacitor, the inductor and the resistor in the time and the frequency domain. 
 
 

Time domain Frequency domain 
Relationship Symbol Relationship Symbol 

( )( ) dv ti t C
dt

=  
i(t) C

+      v      -  

1V I
j Cω

=  
I j

+      V      -

ωC

 
( )( ) di tv t L

dt
=  

i(t) L

+      v      -  
V j LIω=  

I L

+      V      -

jω

 

( ) ( )v t Ri t=  Ri(t)

+      v      -
V RI=  RI

+      V      -
 
 
Impedance 
 
The ratios of V/I in the frequency domain for the resistor, the capacitor and the inductor 
are: 
 

 

Resistor :

1Capacitor :

Inductor :

V R
I
V
I j C
V j L
I

ω

ω

=

=

=

 (1.23) 

 
These ratios are called impedance and it is most often given the symbol Z. 
 

 

Impedance of a Resistor :
1Impedance of a Capacitor :

Impedance of an Inductor :

R

C

L

Z R

Z
j C

Z j L
ω
ω

=

=

=

 (1.24) 
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Impedance is a frequency dependent quantity, it has the units of Ω and it is a complex 
number. It has meaning only in the frequency domain and cannot be transformed directly 
to the time domain. Indeed the impedance of a device represents the 
opposition(resistance) to the flow of sinusoidal current through the device. In general any 
device may be described in terms of its impedance Z like: 
 
 V Z I=  (1.25) 
 
and schematically as shown on Figure 7. 
 

ZI

+         V         -  
Figure 7 

 
Impedance is a very powerful concept and it enables us to drastically simplify and 
analyze circuits. 
 
Impedances combine in the same way that resistors do: 
 
Impedances in series add to an equivalent impedance eqZ  like: 1 2eq nZ Z Z Z= + +…  
 
 

Impedances in parallel add to an equivalent impedance eqZ  like: 
1 2

1 1 1 1

eq nZ Z Z Z
= + +…  

 
 
Methods of Analysis: 
 
Since we still dealing with linear circuits we may employ: 
 

Superposition 
Thevenin and Norton theorems 

Source transformations 
 
The resistance is replaced by the impedance of the elements 
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Example: 
 
Calculate the equivalent impedance of the following circuit viewed through port a-b 
assuming that the circuit operates with a frequency ω of 10000rad/sec. 
 
The impedance of the resistor is 1.5kΩ and the impedance 
of the inductor is 

3(10000)47 10 470j L j jω −= × Ω = Ω . 
 
In terms of the impedance the circuit is now given below. 
The equivalent impedance is now given by the summation of the two impedances across 

1.5k Ω 

R

L 47mH 

a

b

terminals a and b.  
1.5k Ω 

a

b

Ωj470

 
 

(1500 470)eqZ j= + Ω  
 
 
 

 
 
Example: 
Voltage 5sin(10000 / 3)v t π= −  is applied across a capacitor of capacitance 47µF.  
What is the expression for the current flowing through the capacitor? 
 
Using the concept of impedance for a capacitor we have: 
 

1 1
0.47

V I
j C jω

= = I

= ∠−

 

 
The voltage (in phasor form) is V . 05 60
The complex number j0.47 may also be written in phasor form as  00.47 90∠
 
And so the current is (frequency domain) 
  05(0.47) 30I = ∠
 
And so the current flowing through the capacitor (time domain) 
 
 ( ) 2.35sin(10000 / 3)i t t π= +  
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Example: 
Calculate the current i(t) as indicated in the circuit below for  05sin(10 20 )vs t= −

0.1 H 5mF 

10 Ω 

vs

i(t)

a

b
 

 
First we identify the frequency of the system: ω=10 rad/sec 
Next we calculate the impedance of each component. 
 

0.1H inductor:  10(0.1)LZ j j= = Ω  

5mF capacitor: 20
10(0.005)C

jZ j−
= = − Ω  

10Ω resistor:  10RZ = Ω  
 
In the frequency domain the circuit becomes: 

10 Ω 

I

a

b

Ωj Ω-j20-20o
5

 
 
Next we calculate the equivalent  impedance Z seen across the terminals a-b  

I

a

b

-20o
5 Z

 

06

0

10 ( ) //( 20 )
2010
19

10.055
10.055 6

j

Z j j

j

e

= Ω+ Ω − Ω

= + Ω

= Ω

= ∠ Ω

 

 

And so the current I becomes: 
0

0
0

5 20 0.497 24
10.055 6

VI
Z

∠−
= = = ∠−

∠
 

 
And so  0( ) 0.497sin(10 24 )i t t Amperes= −
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Example: 
 
Determine the Thevenin equivalent circuit seen by the load ZL. Assume that 

 05sin(10 20 )vs t= −

0.1 H 5mF 

10 Ω 

vs

i(t)

ZL

b

a

 
The Thevenin resistance is calculated by zeroing out the independent source as shown 
below 
 

ZTh

10 Ω 

Ωj Ω-j20

b

a

 
And ZTh is given by 
 

 1 1 1 1
10 20ZTh j j

= + +
−

 

 

 

0
0

0

10 ( 20) 200 200 0 9.31 62.2
10 (1 20) 10 19 21.47 62.2

4.43 8.23

j jZTh
j j

j

− ∠
= = = = ∠

+ − − ∠−
Ω

= + Ω
 

 
 
Now we need to calculate the open circuit voltage across a-b. 

10 Ω 

Ωj Ω-j20

b

a

V Voc

 
By combining the j and the –j20 impedances we have the following circuit 
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10 Ω 

Ωj1.052

b

a

V Voc

 
And from the voltage divider rule: 

 ( )0

0 0

0

1.052
10 1.052

0.104 6

5 20 0.104 6
0.52 26

jVoc V
j

V Volts

Volts

Ω
=

+ Ω

= ∠−

= ∠− ∠−

= ∠−

 

 
And thus the Thevenin equivalent circuit is 
 

a

b

ZTh

Ω62o
9.31

-26o
0.52

 
a

b

ZTh

Ω4.43+j8.23

 

00.52sin(10 26 ) Vt −  
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