
Examples of Transient RC and RL Circuits. 
The Series RLC Circuit 
 
Impulse response of RC Circuit. 
 
Let’s examine the response of the circuit shown on Figure 1. The form of the source 
voltage Vs is shown on Figure 2. 
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Figure 1.  RC circuit 
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Figure 2. 

 
We will investigate the response  as a function of the ( )vc t pτ  and Vp . 
 
The general response is given by: 
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If  the capacitor voltage at tp RC� t tp=  is equal to Vp . Therefore for times t  the 
response becomes 

tp>
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A general plot of the response is shown on Figure 3 for 
1sec, 6sec, 10RC tp Vp V= = = olts  

 
 

 
Figure 3 

 
If the pulse becomes narrower, the value of vc will not reach the maximum value. 
 
By expanding the exponential in Equation (1.1) we obtain, 

 
2 31 1( ) 1 1 0

2 6
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RC RC RC
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…⎥  (1.3) 

 
When  the higher order terms may be neglected resulting in  RC t�
 
 

 ( ) 0tvc t Vp t tp
RC

≤ ≤�  (1.4) 

 
 
At the end of the pulse (at ) the voltage becomes t tp=
 
 

 ( ) Vptpvc t tp
RC

= �  (1.5) 

 
 

6.071/22.071 Spring 2006, Chaniotakis and Cory  2 



For  the response becomes t tp>
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RCVp tpvc e
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The product Vp  is the area of the pulse and thus the response is proportional to that 
area. As the pulse becomes narrower (i.e. as ) equation (1.6) simplifies to 

tp
0tp →
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If we constrain the area of the impulse to a constant A Vp tp= , then as the pulse becomes 
narrower, the amplitude Vp  increases, resulting in an impulse of strength A. Therefore 
the response of an impulse of strength A is 
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RCAvc e
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=  (1.8) 

 

  
 
 

Figure 4.  Impulse response of RC circuit 
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The spark plug in your car (a simplified model) 
 
Consider the circuit shown on Figure 5. The battery Vb corresponds to the 12 Volt car 
battery. The spark plug is connected actors the inductor and current may flow though it 
only if the voltage across the gap of the plug exceeds a very large value (about 20 kV). 
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Figure 5 

 
When the switch is closed, the current through the inductor reaches a maximum value of 

. The equation that describes the evolution of the current with the switch closed is /Vb R
 

 /( ) 1
t

L RVbi t e
R

−⎛ ⎞
= −⎜

⎝ ⎠
⎟  (1.9) 

 
And the corresponding voltage across the inductor is given by 
 

 /( )
t

L RvL t Vb e
−

=  (1.10) 
 
 
When the switch is opened, the current path is effectively broken and thus the time rate of 
change of the current becomes arbitrarily large. Since the voltage is proportional to 

, the voltage developed across the inductor could become very large. /di dt
 
 
As an example, let’s consider a system with a resistance of 5Ω, a solenoid with an 
inductance of 10mH connected to a 12 Volt battery. How long does it take for the 
solenoid to reach 99% of its maximum value? If the switch is opened in 1µs, what is the 
voltage developed across the solenoid? 
 
The time constant of the system is 

 0.01 0.002sec
5

L
R
= =  

 

The maximum current that can flow in the system is 12 2.4
5

A A= . The time to reach 99% 

of the maximum value is given by 
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 0.0020.99 1
t

e
−

= −  
 
The voltage across the coil when the switch is opened is 
 

 6

2.40.01 24
1 10

iv L kV
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∆
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Response of RC circuit driven by a square wave. 
 
Let’s now consider the RC circuit shown on Figure 6(a) driven by a square wave signal of 
the form shown on Figure 6(b). 
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Figure 6 
 
 
The response vc(t) is given by 
 

 [ ]response = final value + initial value - final value
t

e τ
−

 (1.11) 
 
By assuming that the initial value of the voltage across the capacitor is –Vp the response 
during the first half cycle of the square wave is 
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1 -  2

t
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 (1.12) 

 
During the second half cycle the initial condition is 
 

6.071/22.071 Spring 2006, Chaniotakis and Cory  6 



 
/ 2

( / 2) 1 -  2
T
RCvc T Vp e
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (1.13) 

 
 
And the complete response during the second half of the first cycle becomes 
 

 
/ 2

( )  -   1 -  2  + 
T t
RC RCvc t Vp Vp e Vp e
− −⎡ ⎤⎡ ⎤

= + ⎢ ⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

⎥  (1.14) 

 
Similarly the response during the first part of the second cycle starts with the value of vc 
at t=T and evolves towards the value Vp. 
 
If the time constant is small compared to the period of the square wave, the response will 
reach the maximum and minimum values of the square wave as shown on Figure 7, 
where  and thus  T/2=10RC. 41 10 secRC −= ×
 

 
Figure 7 

 
As the time constant RC increases, it takes longer for the response to reach the maximum 
value. Figure 8 shows a plot of the response for T/2=RC. Note that the response does not 
reach the maximum values of the input signal and the average value of the response is 
equal to the average value of the input signal. 
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Figure 8 

 
Figure 9(a) and Figure 9(b) show the system response for RC=5T/2 for a square wave 
with a duty factor of 50% that varies between 0 and 5 Volts. Notice that the average value 
is reached within a certain number of oscillations and that there is a variation of the 
response “ripple” about the average value. The magnitude of this ripple is inversely 
proportional to the time constant RC. 
This is the first step that one must take when an AC signal is converted to DC.  Next 
week, when we learn about the diode, we will explore this circuit further. 
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(a) 

 
(b) 

Figure 9 
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Second Order Circuits 
 
Series RLC circuit 
 
The circuit shown on Figure 10 is called the series RLC circuit. We will analyze this 
circuit in order to determine its transient characteristics once the switch S is closed. 
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Figure 10 

 
The equation that describes the response of the system is obtained by applying KVL 
around the mesh 
 
 vR vL vc Vs+ + =  (1.15) 
 
The current flowing in the circuit is 
 

 dvci C
dt

=  (1.16) 

 
And thus the voltages vR and vL are given by 
 

 dvcvR iR RC
dt

= =  (1.17) 

 

 
2

2

di d vcvL L LC
dt dt

= =  (1.18) 

 
Substituting Equations (1.17) and (1.18) into Equation (1.15) we obtain 
 

 
2

2

1 1d vc R dvc vc Vs
dt L dt LC LC

+ + =  (1.19) 

 
The solution to equation (1.19) is the linear combination of the homogeneous and the 
particular solution  p hvc vc vc= +
 
The particular solution is 
 
 pvc Vs=  (1.20) 
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And the homogeneous solution satisfies the equation  
 

 
2

2

1 0h h
h

d vc dvcR vc
dt L dt LC

+ + =  (1.21) 

 
 
Assuming a homogeneous solution is of the form stAe  and by substituting into Equation 
(1.21) we obtain the characteristic equation 
 

 2 1 0Rs s
L LC

+ + =  (1.22) 

 
 
By defining 
 

 
2
R
L

α =  (1.23) 

And 
 

 1
LCοω =  (1.24) 

 
The characteristic equation becomes 
 
 
 2 22s s οα ω 0+ + =  (1.25) 
 
The roots of the characteristic equation are 
 
 21s 2

οα α ω= − + −  (1.26) 
 
 22s 2

οα α ω= − − −  (1.27) 
 
And the homogeneous solution becomes 
 
 1

1 2
2s t

hvc A e A e= + s t

2

 (1.28) 
 
The total solution now becomes 
 
 1

1 2
s tvc Vs A e A e= + + s t  (1.29) 
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The parameters A1 and A2 are constants and can be determined by the application of the 

initial conditions of the system ( 0vc t )=  and ( 0)dvc t
dt
= . 

 
The value of the term 2 2

οα ω−  determines the behavior of the response. Three types of 
responses are possible: 
 

1. οα ω=  then  s1 and s2 are equal and real numbers: no oscillatory behavior 
Critically Damped System 
 

2. οα ω> . Here s1 and s2 are real numbers but are unequal: no oscillatory behavior 
Over Damped System 

1 2
1 2

s t svc Vs A e A e= + + t  
 

3. οα ω< . 2 2 2jο ο
2α ω ω− = −α  In this case the roots s1 and s2 are complex 

numbers: 2 2 21 , 2s j s jο
2

οα ω α α ω α= − + − = − − − . System exhibits 
oscillatory behavior 
Under Damped System 

 
Important observations for the series RLC circuit. 
 

• As the resistance increases the value of α increases and the system is driven 
towards an over damped response. 

• The frequency 1
LCοω =  (rad/sec) is called the natural frequency of the system 

or the resonant frequency. 

• The quantity L
C

 has units of resistance 

 
 
Figure 11 shows the response of the series RLC circuit with L=47mH, C=47nF and for 
three different values of R corresponding to the underdamped, critically damped and 
overdamped case. We will construct this circuit in the laboratory and examine its 
behavior in more detail.
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(a) Under Damped. R=500Ω 

 

 
(b) Critically Damped. R=2000 Ω 

 

 
(c) Over Damped. R=4000 Ω 

 
Figure 11 
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The LC circuit. 
 
In the limit  the RLC circuit reduces to the lossless LC circuit shown on Figure 12. 0R →
 

S

C

L

vc
+

-

+     vL      -

 
 

Figure 12 
 
The equation that describes the response of this circuit is 
 

 
2

2

1 0d vc vc
dt LC

+ =  (1.30) 

 
Assuming a solution of the form stAe  the characteristic equation is 
 
 2 2 0s οω+ =  (1.31) 

Where 1
LCοω =  

 
The two roots are 
 
 1s j οω= +  (1.32) 
 
 2s j οω= −  (1.33) 
  
 
And the solution is a linear combination of  11 s tA e  and 22 s tA e  
 
 ( ) 1 2oj t j tvc t A e A e οω ω−= +  (1.34) 
 
By using Euler’s relation Equation (1.34) may also be written as 
 
 ( ) 1cos( ) 2sin(vc t B t B tο )οω ω= +  (1.35) 
 
The constants A1, A2 or B1, B2 are determined from the initial conditions of the system. 
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For  and for ( 0)vc t Vo= =
( 0) 0dvc t
dt
=

=  (no current flowing in the circuit initially) we 

have from Equation (1.34) 
 
 1 2A A Vo+ =  (1.36) 
And 
 
 1 2 0o oj A j Aω ω− =  (1.37) 
 
Which give 
 

 1 2
2

VoA A= =  (1.38) 

And the solution becomes 
 

 ( )( )
2

cos( )

oj t j t

o

Vovc t e e

Vo t

οω ω

ω

−= +

=
 (1.39) 

The current flowing in the circuit is 
 

 
sin( )

dvci C
dt

CVo tο οω ω

=

= −
 (1.40) 

 
And the voltage across the inductor is easily determined from KVL or from the element 

relation of the inductor divL L
dt

=  

 

 
cos( )o

vL vc
Vo tω

= −
= −

 (1.41) 

 
Figure 13 shows the plots of . Note the 180 degree phase difference 
between vc(t) and vL(t) and the 90 degree phase difference between vL(t) and i(t). 

( ), ( ), ( )vc t vL t and i t

 
Figure 14 shows a plot of the energy in the capacitor and the inductor as a function of 
time. Note that the energy is exchanged between the capacitor and the inductor in this 
lossless system 
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(a) Voltage across the capacitor 

 
(b) Voltage across the inductor 

 
(c)Current flowing in the ciruit 

 
Figure 13 
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(a) Energy stored in the capacitor 

 

 
(b) Energy stored in the inductor 

 
Figure 14 
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