
6.079/6.975 S. Boyd & P. Parrilo 
December 10–11, 2009. 

Final exam 

This is a 24 hour take-home final exam. Please turn it in to Professor Stephen Boyd,
(Stata Center), on Friday December 11, at 5PM (or before). 

You may use any books, notes, or computer programs (e.g., Matlab, CVX), but you may not 
discuss the exam with anyone until December 11 after 5PM, after everyone has taken the 
exam. The only exception is that you can ask us for clarification, via email. Please address 
your emails to both professors and the TA. 

Please make a copy of your exam before handing it in. 

When a problem involves computation you must give all of the following: a clear discussion 
and justification of exactly what you did, the Matlab source code that produces the result, 
and the final numerical results or plots. 

Matlab files containing problem data are available on Stellar. 

All problems have equal weight. Some are easier than they might appear at first glance. 
And others are harder than they might appear at first glance. 

Be sure to check your email and the course web site on Stellar often during the exam, just 
in case we need to send out an important announcement. 

And one technical comment. For problems that require you to work out a numerical solution, 
you are welcome to use a solution method that involves solving more than just a single convex 
optimization problem. (Of course, only when this is necessary.) 
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1. Optimal generator dispatch. In the generator dispatch problem, we schedule the elec­
trical output power of a set of generators over some time interval, to minimize the 
total cost of generation while exactly meeting the (assumed known) electrical demand. 
One challenge in this problem is that the generators have dynamic constraints, which 
couple their output powers over time. For example, every generator has a maximum 
rate at which its power can be increased or decreased. 

We label the generators i = 1, . . . , n, and the time periods t = 1, . . . , T . We let pi,t 

denote the (nonnegative) power output of generator i at time interval t. The (positive) 
electrical demand in period t is dt. The total generated power in each period must 
equal the demand: 

n 

pi,t = dt, t = 1, . . . , T. 
i=1 

Each generator has a minimum and maximum allowed output power: 

Pi 
min ≤ pi,t ≤ Pi 

max , i = 1, . . . , n, t = 1, . . . , T. 

The cost of operating generator i at power output u is φi(u), where φi is an increasing 
strictly convex function. (Assuming the cost is mostly fuel cost, convexity of φi says 
that the thermal efficiency of the generator decreases as its output power increases.) 
We will assume these cost functions are quadratic: φi(u) = αiu + βiu

2, with αi and βi 

positive. 

Each generator has a maximum ramp-rate, which limits the amount its power output 
can change over one time period: 

|pi,t+1 − pi,t| ≤ Ri, i = 1, . . . , n, t = 1, . . . , T − 1. 

In addition, changing the power output of generator i from ut to ut+1 incurs an addi­
tional cost ψi(ut+1 − ut), where ψi is a convex function. (This cost can be a real one, 
due to increased fuel use during a change of power, or a fictitious one that accounts 
for the increased maintenance cost or decreased lifetime caused by frequent or large 
changes in power output.) We will use the power change cost functions ψi(v) = γi|v|, 
where γi are positive. 

Power plants with large capacity (i.e., Pi 
max ) are typically more efficient (i.e., have 

smaller αi, βi), but have smaller ramp-rate limits, and higher costs associated with 
changing power levels. Small gas-turbine plants (‘peakers’) are less efficient, have less 
capacity, but their power levels can be rapidly changed. 

The total cost of operating the generators is 

n T n T −1 

C = φi(pi,t) + ψi(pi,t+1 − pi,t). 
i=1 t=1 i=1 t=1 

Choosing the generator output schedules to minimize C, while respecting the con­
straints described above, is a convex optimization problem. The problem data are dt 
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(the demands), the generator power limits Pi 
min and Pi 

max , the ramp-rate limits Ri, and 
the cost function parameters αi, βi, and γi. We will assume that problem is feasible, 
and that pi,t 

⋆ are the (unique) optimal output powers. 

(a) Price decomposition. Show that there are power prices Q1, . . . , QT for which the 
following holds: For each i, pi,t 

⋆ solves the optimization problem 

�T �T −1minimize t=1 (φi(pi,t) −Qtpi,t) + t=1 ψi(pi,t+1 − pi,t) 
subject to Pi 

min ≤ pi,t ≤ Pi 
max , t = 1, . . . , T 

|pi,t+1 − pi,t| ≤ Ri, t = 1, . . . , T − 1. 

The objective here is the portion of the objective for generator i, minus the revenue 
generated by the sale of power at the prices Qt. Note that this problem involves 
only generator i; it can be solved independently of the other generators (once the 
prices are known). How would you find the prices Qt? 

You do not have to give a full formal proof; but you must explain your argument 
fully. You are welcome to use results from the text book. 

(b) Solve the generator dispatch problem with the data given in gen_dispatch_data.m, 
which gives (fake, but not unreasonable) demand data for 2 days, at 15 minute 
intervals. This file includes code to plot the demand, optimal generator powers, 
and prices. (You must replace these variables with their correct values.) Com­
ment on anything you see in your solution that might at first seem odd. Using 
the prices found, solve the problems in part (a) for the generators separately, to 
be sure they give the optimal powers (up to some small numerical errors). 

Remark. While beyond the scope of this course, we mention that there are very simple 
price update mechanisms that adjust the prices in such a way that when the generators 
independently schedule themselves using the prices (as described above), we end up 
with the total power generated in each period matching the demand, i.e., the opti­
mal solution of the whole (coupled) problem. This gives a decentralized method for 
generator dispatch. 
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2. Internal rate of return for cash streams with a single initial investment. We use the 
notation of example 3.34 in the textbook. Let x ∈ Rn+1 be a cash flow over n periods, 
with x indexed from 0 to n, where the index denotes period number. We assume 
that x0 < 0, xj ≥ 0 for j = 1, . . . , n, and x0 + · · · + xn > 0. This means that 
there is an initial positive investment; thereafter, only payments are made, with the 
total of the payments exceeding the initial investment. (In the more general setting of 
example 3.34, we allow additional investments to be made after the initial investment.) 

(a) Show that IRR(x) is quasilinear in this case. 

(b) Blending initial investment only streams. Use the result in part (a) to show the 
following. Let x(i) ∈ Rn+1 , i = 1, . . . , k, be a set of k cash flows over n periods, 
each of which satisfies the conditions above. Let w ∈ Rk , with 1T w = 1, and +

consider the blended cash flow given by x = w1x
(1) +· · ·+wkx

(k). (We can think of 
this as investing a fraction wi in cash flow i.) Show that IRR(x) ≤ maxi IRR(x(i)). 
Thus, blending a set of cash flows (with initial investment only) will not improve 
the IRR over the best individual IRR of the cash flows. 

3. Infimal convolution. Let f1, . . . , fm be convex functions on Rn . Their infimal con­

volution, denoted g = f1 ⋄ · · · ⋄ fm (several other notations are also used), is defined 
as 

g(x) = inf{f1(x1) + · · · + fm(xm) | x1 + · · · + xm = x}, 

with the natural domain (i.e., defined by g(x) < ∞). In one simple interpretation, 
fi(xi) is the cost for the ith firm to produce a mix of products given by xi; g(x) is 
then the optimal cost obtained if the firms can freely exchange products to produce, 
all together, the mix given by x. (The name ‘convolution’ presumably comes from the 
observation that if we replace the sum above with the product, and the infimum above 
with integration, then we obtain the normal convolution.) 

(a) Show that g is convex. 

∗ ∗ ∗(b) Show that g = f1 + · · · + fm . In other words, the conjugate of the infimal 
convolution is the sum of the conjugates. 

(c) Verify the identity in part (b) for the specific case of two strictly convex quadratic 
functions, fi(x) = (1/2)xT Pix, with Pi ∈ S++

n , i = 1, 2. 

Hint: Depending on how you work out the conjugates, you might find the matrix 
identity (X + Y )−1Y = X−1(X−1 + Y −1)−1 useful. 
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4. Robust minimum volume covering ellipsoid. Suppose z is a point in Rn and E is an 
ellipsoid in Rn with center c. The Mahalanobis distance of the point to the ellipsoid 
center is defined as 

M(z, E) = inf{t ≥ 0 | z ∈ c + t(E − c)}, 

which is the factor by which we need to scale the ellipsoid about its center so that z is 
on its boundary. We have z ∈ E if and only if M(z, E) ≤ 1. We can use (M(z, E) − 1)+ 
as a measure of the Mahalanobis distance of the point z to the ellipsoid E . 

Now we can describe the problem. We are given m points x1, . . . , xm ∈ R
n . The goal 

is to find the optimal trade-off between the volume of the ellipsoid E and the total 
Mahalanobis distance of the points to the ellipsoid, i.e., 

m 

(M(z, E) − 1)+ . 
i=1 

Note that this can be considered a robust version of finding the smallest volume ellipsoid 
that covers a set of points, since here we allow one or more points to be outside the 
ellipsoid. 

(a) Explain how to solve this problem. You must say clearly what your variables are, 
what problem you solve, and why the problem is convex. 

(b) Carry out your method on the data given in rob_min_vol_ellips_data.m. Plot 
the optimal trade-off curve of ellipsoid volume versus total Mahalanobis distance. 
For some selected points on the trade-off curve, plot the ellipsoid and the points 
(which are in R2). We are only interested in the region of the curve where the 
ellipsoid volume is within a factor of ten (say) of the minimum volume ellipsoid 
that covers all the points. 

Important. Depending on how you formulate the problem, you might encounter 
problems that are unbounded below, or where CVX encounters numerical diffi­
culty. Just avoid these by appropriate choice of parameter. 

Very important. If you use Matlab version 7.0 (which is filled with bugs) you 
might find that functions involving determinants don’t work in CVX. If you use 
this version of Matlab, then you must download the file blkdiag.m on the course 
website and put it in your Matlab path before the default version (which has a 
bug). 
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5. Fitting a vector field to given directions. This problem concerns a vector field on Rn , 
i.e., a function F : Rn → Rn . We are given the direction of the vector field at points 
x(1), . . . , x(N) ∈ Rn , 

1 
q(i) = F (x(i)), i = 1, . . . , N. 

‖F (x(i))‖2 

(These directions might be obtained, for example, from samples of trajectories of the 
differential equation ż = F (z).) The goal is to fit these samples with a vector field of 
the form 

F̂ = α1F1 + · · · + αmFm, 

where F1, . . . , Fm : Rn → Rn are given (basis) functions, and α ∈ Rm is a set of 
coefficients that we will choose. 

We will measure the fit using the maximum angle error, 

J = max � 

6 (q(i), F̂ (x(i))) � , 
i=1,...,N 

where 6 (z, w) = cos−1((zT w)/‖z‖2‖w‖2) denotes the angle between nonzero vectors z 
and w. We are only interested in the case when J is smaller than π/2. 

(a) Explain how to choose α so as to minimize J using convex optimization. Your 
method can involve solving multiple convex problems. Be sure to explain how 
you handle the constraints F̂ (x(i)) 6= 0. 

(b) Use your method to solve the problem instance with data given in vfield_fit_data.m, 
with an affine vector field fit, i.e., F̂ (z) = Az + b. (The matrix A and vector b 
are the parameters α above.) Give your answer to the nearest degree, as in 
‘20◦ < J⋆ ≤ 21◦’. 

This file also contains code that plots the vector field directions, and also (but 
commented out) the directions of the vector field fit, F̂ (x(i))/‖F̂ (x(i))‖2. Create 
this plot, with your fitted vector field. 
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6. Efficient solution of basic portfolio optimization problem. This problem concerns the 
simplest possible portfolio optimization problem: 

maximize µT w − (λ/2)wT Σw 
subject to 1

T w = 1, 

with variable w ∈ Rn (the normalized portfolio, with negative entries meaning short 
positions), and data µ (mean return), Σ ∈ S++ 

n (return covariance), and λ > 0 (the risk 
aversion parameter). The return covariance has the factor form Σ = FQF T +D, where 
F ∈ Rn×k (with rank K) is the factor loading matrix, Q ∈ S++ 

k is the factor covariance 
matrix, and D is a diagonal matrix with positive entries, called the idiosyncratic risk 

(since it describes the risk of each asset that is independent of the factors). This form 
for Σ is referred to as a ‘k-factor risk model’. Some typical dimensions are n = 2500 
(assets) and k = 30 (factors). 

(a) What is the flop count for computing the optimal portfolio, if the low-rank plus 
diagonal structure of Σ is not exploited? You can assume that λ = 1 (which can 
be arranged by absorbing it into Σ). 

(b) Explain how to compute the optimal portfolio more efficiently, and give the flop 
count for your method. You can assume that k ≪ n. You do not have to give the 
best method; any method that has linear complexity in n is fine. You can assume 
that λ = 1. 

Hints. You may want to introduce a new variable y = F T w (which is called the 
vector of factor exposures). You may want to work with the matrix 

G =	
1 F 

∈ R(n+k)×(1+k) ,
0 −I 

treating it as dense, ignoring the (little) exploitable structure in it. 

(c) Carry out your method from part (b) on some randomly generated data with 
dimensions n = 2500, k = 30. For comparison (and as a check on your method), 
compute the optimal portfolio using the method of part (a) as well. Give the 
(approximate) CPU time for each method, using tic and toc. Hints. After you 
generate D and Q randomly, you might want to add a positive multiple of the 
identity to each, to avoid any issues related to poor conditioning. Also, to be able 
to invert a block diagonal matrix efficiently, you’ll need to recast it as sparse. 

(d) Risk return trade-off curve. Now suppose we want to compute the optimal portfo­
lio forM values of the risk aversion parameter λ. Explain how to do this efficiently, 
and give the complexity in terms of M , n, and k. Compare to the complexity of 
using the method of part (b) M times. Hint. Show that the optimal portfolio is 
an affine function of 1/λ. 
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7. Optimizing the inertia matrix of a 2D mass distribution. An object has density ρ(z) 
at the point z = (x, y) ∈ R2, over some region R ⊂ R2 . Its mass m ∈ R and center of 
gravity c ∈ R2 are given by 

1 
m = ρ(z) dxdy, c = ρ(z)z dxdy, 

R m R 

and its inertia matrix M ∈ R2×2 is 

M = ρ(z)(z − c)(z − c)T dxdy. 
R 

(You do not need to know the mechanics interpretation of M to solve this problem, 
but here it is, for those interested. Suppose we rotate the mass distribution around 
a line passing through the center of gravity in the direction q ∈ R2 that lies in the 
plane where the mass distribution is, at angular rate ω. Then the total kinetic energy 
is (ω2/2)qT Mq.) 

The goal is to choose the density ρ, subject to 0 ≤ ρ(z) ≤ ρmax for all z ∈ R, and a 
fixed total mass m = mgiven, in order to maximize λmin(M). 

To solve this problem numerically, we will discretize R into N pixels each of area a, 
with pixel i having constant density ρi and location (say, of its center) zi ∈ R

2 . We 
will assume that the integrands above don’t vary too much over the pixels, and from 
now on use instead the expressions 

N N N 

m = a 
� 

ρi, c = 
a � 

ρizi, M = a 
� 

ρi(zi − c)(zi − c)T . 
m

i=1 i=1 i=1 

The problem below refers to these discretized expressions. 

(a) Explain how to solve the problem using convex (or quasiconvex) optimization. 

(b) Carry out your method on the problem instance with data in inertia_dens_data.m. 
This file includes code that plots a density. Give the optimal inertia matrix and 
its eigenvalues, and plot the optimal density. 
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