Modern Biology in Two Lectures (Part II)

Gil Alterovitz

Course Administration

Handouts

- Open Courseware form- please turn in before leaving class
- Matlab form- for free copy of Matlab for students in class for use in 6.092/HST.480 course. You can also use server Matlab or lab cluster.
- Background sheet- complete and turn in by end of class so we can put you on course email list.
- Homework 1 (Due next Thurs.)
 - See assignments section in course site.

Background

Student Department Affiliation Percent HST Department

Today

Introduction, Part II- Gil Alterovitz
Review Part I
Splicing
Alternative Splicing
Post-Translational Modifications
Sequence Analysis- Manolis Kellis

Genes to Proteins

Transcription

Translation

DNA: "Lifetime Plan"

mRNA: "Task List"

Protein: Machines

MWTRFDSALPRSTPSTAKLVMPOILLLLEE EDTYESAQYKTWLMVCSDETTTE

DNA Sequencing

Source: HPCGG

Figure by MIT OCW

Relative Expression Levels

Figure by MIT OCW

Identification Post translation modification Splicing variants Relative expression levels

Communication analogy: start, message, stop.

Source: Ehsan Afkhami

Stereo Rack Analogy

Alternative Splicing

Figure by MIT OCW

Sequence Ordering

DNA	Coding Strand (Codons)	5' >>> T T C>>3'
	Template Strand (Anti-codons)	3' < < < A A G < < 5'
RNA	Message (Codons)	5'>>>UUC>>3'
Protein	Amino Acid	Amino > > > Phenylalanine > > > Carboxy

Figure by MIT OCW

Post-translational Modifications

339 modifications in RESID Database

Figure by MIT OCW

Bioinformatics: Trends, Tools, and Databases

What kind of problems need to be solved? How have previous problems in the field been approached?

Databases Needed to Store Growing List of Sequence Data

Entrez Human Protein Sequences

* Alterovitz, G., Afkhami, E. & Ramoni, M. in *Focus on Robotics and Intelligent Systems* Research, ed. Columbus, F. Nova Science Publishers, Inc., New York, 2005 (In press).

Paradigm Shifts in Bioinformatics

Sequencing (1980's to early 1990's)

- DNA/RNA/Protein Sequence Analysis/sequence storage
- 3-D Protein Structure Prediction (Mid-1980's-late 1990's)
 - Databases of Protein structures
- DNA/RNA Microarray Expression Experiments (Mid-1990's to 2000's)
 - Databases of expression data
- Protein interaction experiments (Early 2000's to Present)
 - Databases with pairwise interactions
- Mass Spec proteomic pattern experiments (Early 2000's to Present)
 - Databases with mass spec, protein identifications, proteomic patterns
- Integration of multiple modalities (Ongoing)

Human Genome Project

~ 99% of human genome has been sequenced (2004).
Nature 431: 931-945.

- Error rate: ~1 event per 100,000 bases
- Number of protein-coding genes: 20,000-25,000
- Number of protein-coding genes in worm: ~18,000
- Genes comprise only about 2% of the human genome.
 - The rest consists of non-coding regions: functions may include providing chromosomal structural integrity and gene regulation.

