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Announcements

= Homework 2/3 due this Fri 5p
= Projects: In progress
= Tfeday

= |ntro to Proteomics, Mass spec, scale-free
networks

= TThurs

= |ntro to Proteomics Part Il
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Robotic Automation

Visit to new Novartis biomedical research center (built
2004)- near Random Hall. Email Gil for details.
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Organization: Levels of Abstraction

= Part I: Sequence
= Part II: Expression
= Part lll: Proteemics

= Part IV: Systems/Misc.



Proteomics: A Definition

= “J'he study of entire protein systems
(proteemes): what are the component
proteins, how they interact with each
other, what kinds ofi metabolic networks or
signaling; networks they form™- Dr. Vihinen
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Paradigmi Shifts, in Bieinformatics
Sequencing (1960's to early 1990's)

= DNA/RNA/Protein Sequence Analysis/seguence storage

3-D Protein Structure Prediction (Mid-1980"s-late
1990's)

= [Databases of Protein structures

DNA/RNA Microarray Expression Experiments (Mid-
1990's to 2000's)

= Databases ofi expression data
Protein interaction experiments (Early 2000’s to
Present)

= [Databases with pairwise interactions

Mass Spec proteomic pattern experiments (Early
2000’s to Present)

= Databases with mass spec, protein identifications, proteomic
patterns

Integration of multiple modalities (Ongoing)
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Networks In
B|0|nformatlcs/Proteomlcs

Image removed due to
copyright considerations

Image removed due to
copyright considerations

Scale-free networks Visualization

Gil Alterovitz
HST.480/6.092

Network Analysis



[Representation

= Represented by a Graph G
= G=(V,E)
= Vs a set of vertices and E is a set of edges

between the vertices, namely:
E={(uyv)|u, vV}

= Node=Vertex
= Arc=Edge

= Directed vs. Undirected- no directionality
(assume bidirectional)

= Cyclic vs. Acyclic- no path exists from any
vertex to itself

= Direct Acyclic Graph = Bayesian Network
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Networks

= Communication Networks
= Nodes are routers/phones
= Edges are phone lines

Image removed due to
copyright considerations
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Networks

Biological Networks

= Protein Interaction
Networks

=« Nodes are yeast proteins

. : Image removed due to
= Edges are protein-protein copyright considerations

Interactions
= Gene regulation network
= |\letabolism

= Biochemical reactions Yeast Protein Interaction Network

THST
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Types

Correlation graph
(undirected graph)

The information about the positive / negative correlation between genes is
described. Two related genes are connected with an undirected arc.

Cause-effect graph
(direct graph)

Describing the relationship caused by a gene acting upon another gene.
Causality is represented by a directed arc, whose direction shows the cause

and effect.

Weighted graph
(in the broad sense)

Some qualitative meaning is attached to a graph within its arcs.

E.g., S-system or a Bayesian network.

Genome Informatics 14: 104-113 (2003) HSIJ
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Adjacenecy. Viatrix

Vertices: A,B,C,D
Edges: A—~B, B<C,
C+~D, D<A

Represent as n x N matrix
called:

A where n=Number of Vertices

Place a 1 (or other weight
for each edge) in matrix
element:

Aij where edge goes from i—j

O\

To:

> ||

From:
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[How: many Edges?

nZ elements in matrix.

Assume: no edges
between selfi (i.e. no edge
from A to A, etc.)

= N?-n elements

IHowever, since edges are A
bidirectional, we are double

counting each edge.

= Use only one of triangles: From:
Number of edges for k nodes =

n-—n

2 Harvard-MIT
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Properties: Degree

INeighbors

= \Vertices that have an Q
edge between them. Q

Degree

= Number ofi edges
linking ai given vertex
to its neighbors.

« E.g. Degree is 3 for
vertex C.
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Properties: Clustering Coeflicient

kk:1)
Cluster- reflects tendency for 2
neighbors of given vertex to be

connected.

Cluster Coefficient= Number of
edges between neighbors of vertex
| divided by total possible edges
between k. neighbors of vertex i.

=« If i=A, then k=3 and: D *13

=1
3%(3-1)

Average Cluster Coefficient:
tendency of graph to form clusters
= mean(Ci) for all vertices i =
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Erdos-Renyi Model
(Randoem Network)

Growth model

= Edges to new nodes
added from existing
nodes with equal
probability

Degree distribution

P(k), where k is the

degree ofi node

Average pathi length ~
In N, where N Is number A .

of nodes ‘
Figure by MIT OCW

Poisson distribution

R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod.
Phys., 74, 47, 2002



Scale-free Network

P(k) ~k-¥
v<3 implies scale
Scale-free = e
Growth model. k)= K

> k.

= Add a new node with m edges
to existing network

= Probability IT of adding edge
from vertex 1 to a new vertex
Increases as to vertex 1’s
degree (k.) increases:

Average path length ~ In (In
N), where N is number of
nodes. Therefore, more
efficient signaling than .
random network.

Figure by MIT OCW
Scale-free Network

Power-law distribution



A Random network B Scale-free network C Hierarchical network
Aa Ba

Most vertices have
degree close to the
‘average degree.’

/

Hubs = high

degree vertices. -
@w@w&lﬁ 1 L L
1 10 10 100 1,000 10,000

k k

Figure by MIT OCW Nature. 2000 Jul 27;406(6794):378-82.



e ror i aem Tl B S

Courtesy of America West Airlines, Used with permission. Harvard i
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Robustness Under Eallure and
Attack

Measure of network operation:
number of vertices in largest
subgraph (a path exists any vertex
to any other vertex). S is above
number normalized by the original
size of the graph.

It failure is random; hit:
= Remove random node

= Scale-free network is more likely Random
to survive than random network

O-@

I failure is targeted hit:
= Remove node that causes Image removed due to
maximum ‘damage’ copyright considerations

= Scale-free network is more
vulnerable than random network

®
Q —» O o Scale-free
@)

Image removed due to
copyright considerations



Application: Protein-Protein
Interactions

= Proteins (Vertices) with
high degree (interact with
many other proteins
directly) are more
essential than ones with a

low degree_ Image removed due to

copyright considerations

= Knocking out high degree
proteins more likely to
result in catastrophic
system failure.
= Drug target applications Sample Protein Interaction Network
(From Yeast)



Case Study: Lethality and

Centrality for Yeast Proteins

1,870 proteins
(vertices)
2,240 interactions
(edges)
93% of proteins are degree<b
« 21% are essential to yeast Image removed due to
survival
0.7% of proteins are
degree>15

s 62% are essential

Positively correlated:

Correlation coefficient
between lethality and
connectivity is 0.75.

copyright considerations

Complete Yeast Protein Interaction
Network

Nature. 2001 May 3;411(6833):41-2.
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Meta-Database Steps

Parse XNIL/flat files of databases

Convert Different protein identification numbers to NCBI
Entrez Protein Gl numbers (SeglHound Java API).

Use SegHound to find redundant Gl's and select best
annotated version protein from a group of database
entries referring to the same protein sequence
(redundant proteins).

Merge databases (removing duplicates)

Calculate molecular weight of different cleavage
products based on NCBI Entrez annotated features

Create hash/direct-lookup table for quick access via

molecular weight
Harvard-MIT
Division of Health
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\/isualization of Interactions

= edges (interactions)
= vertices (proteins)
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TThe Human Vassome

Example: Found two proteins that bind. VWhat are they?

The Human Massome

Flease enter weight bound= of the participating proteins:

300

1000 ¢ weight of 1=t interactor : |

If_'l:ll:ll:l— < weight of 2nd interactor > "j'E":":I

Get Interactions!
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* 11684

Example

The Human Massome

2 Interactions with participant=s weighing betwveen

(12000 . 13500) and (2000 ., 4000):

Weight

MName 1

2071, 580
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Example: Source of Interaction

The Human Massome

Additional information for interaction i1d 116846:

DB Short . Interaction
Name Label Full Name Bibref Ty

pe
HMS-PCI (13, confidence: low. prewiously o I
annotated: na. yeast homalogy

genbiol 4

Go Back

Source: High-throughput mass spectrometric protein complex
identification

Found: yeast proteins interacted. Found homologous proteins in human.
Assume the human proteins interact.



Erom Interaction Networks to
Signaling| Pathways

Assume just
s Image removed due to

example: We copyright considerations

don’t know
role of Fas-L

Following
pathway, we
can see ‘Fas-
L involved in
JNK Pathway”
->apoptosis
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Proteomic Profiles Using
Surface Enhanced LLaser Desorption

lonization Time-of-Elight Mass
Spectrometry (SELDI-TOEF MS)

Gil Alterovitz
HST.480/6.092
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The Promise of Proteomics...

PROTEOMICS
Searching for the realstyff of life

The discovery that humans have fewer genesthan expected hasthru into the resear ch spotlight, says Victoria Griffith

Geneticsand Medicine BIOTECH'S

Recr uiting Gen% NEXT
For a Revolution in Diagnostics HOLY GRAIL

Now, companies areracing to
As companies create medicines for special conditions that require molecular testing.

They are helping change the way common diseases are diagnosed Decl pher the h uma m pC

Protein microarrays an

Gavin MacBeath Harvard-MIT
Division of Health
Science & Technology




While the numier off genetic sequences in Entrez is
starting te saturate, the preteins being cataloged In
Entrez is still growing exponentially each year

Entrez Human Nucleotide Sequences Entrez Humen Protein Sequences
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" Alterovitz, G., Afkhami, E. & Ramoni, M. in Focus on Robotics and Intelligent Systems
Research, ed. Columbus, F. Nova Science Publishers, Inc., New York, 2005 (In press).
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1990's Genomics =» 2000’s Proteomics

Genome Transcriptome Proteome

Proteins Modified Proteins

DNA —>» RNA —>» : —> g\ ——> Biological Function

Transcription Translation Post-Translation
Modification

~ 30,000 Genes ——» > 1,000,000 Proteins ——» x5 to 50 functional links
per protein

Figure by MIT OCW

Genes do not tell the whole story. We need to look at proteins.

THST
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Originall Preteomic Cancer Profiling
Paper

= Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA,
Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta
LA. “Use of proteomic patterns in serum to identify ovarian

cancer.” Lancet. 2002. Feb 16;359(9306):572-7.

Image removed due to copyright considerations
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Early: Genoemic Cancer Profiling

[Papers

= DeRisi J, Penland L, Brown PO, Bitther ML, Meltzer PS,
Ray M, Chen Y, Su YA, Trent JM. “Use of a cDNA
microarray to analyse gene expression patterns in
human cancer,” Nat Genet. 1996 Dec;14(4):457-60.

= Eric S. Lander , “The New Genomics: Global Views of

Biology,” Science 274, 536 (1996)

= Kononen J, Bubendorf L, Kallioniemi A, Barlund M,
Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter
G, Kallioniemi OP. “Tissue microarrays for high-
throughput molecular profiling of tumor specimens,” Nat

Med. 1998 Jul;4(7):844-7

THST
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ihe Promise: Olal Preteomics = New Proteomics,
Surface Enhanced Laser Desorption and

onization (SELDI)
 Parallelization

Peptides

Pre-Prep
Steps Cut - /’_\—\
Sample ———————» 2D Page ———)» Isolate ———» Digest ——» b0

Samples —————)» Protein Separation / Purification ——» Mass Spectrometry ——)» Data Analysis
and Storage

Normal / Diseased
@ Tissues
e Cellular

@ Sub-cellular

Figure by MIT OCW



Vlass, spectrometry Is growing at a much faster rate in terms of
papers compared to the general Publvied database

Mass Spectrometry-Related PubMed Entries
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Mass Spectrometry, Matrix-Assisted
—oc— Laser Desorption-lonization and
Proteomics
Mass Spectrometry, Matrix-Assisted
Laser Desorption-lonization
~ ' Mass Spectrum Analysis (All Types)
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Alterovitz, G., Afkhami, E. & Ramoni, M. in Focus on Robotics and Intelligent Systems Research, ed.
Columbus, F. Nova Science Publishers, Inc., New York, 2005 (In press).




New: Elexinility with SELDI-TOF

CHEMICAL SURFACES

Ay, 43, N ui

Hydrophobic lonic

BIOCHEMICAL SURFACES

%@&7@&

Antibody Enzyme Receptor Phage

Figure by MIT OCW Harvard-MIT
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